筛选条件:

  • 仅五星
  • 10-30元
清空筛选条件
顾客评分:
仅五星 以上 以上 以上 以上
销售价格:
0-10元10-30元30-50元50-100元100~元以上
折扣力度:
0折-6折
筛选:
    • 平面几何证明方法全书
    •   ( 510 条评论 )
    • /2024-03-01/ 哈尔滨工业大学出版社
    • 全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。

    • ¥24 ¥48 折扣:5折
    • 黎曼几何
    •   ( 785 条评论 )
    • 黄利兵 /2025-01-01/ 科学出版社
    • 本书根据作者近年来多次在南开大学讲授黎曼几何的讲稿写成,可以作为黎曼几何的入门教材,主要介绍黎曼几何的基本概念与基本方法。全书共十四讲,依次介绍黎曼流形、黎曼联络、测地线、曲率等基本概念;其间介绍弧长的变分公式以及Jacobi场等基本方法,并讨论黎曼流形上的几何变换、微分算子、完备性、比较定理等;最后,作为黎曼流形的重要实例,介绍了齐性黎曼流形。每一讲都配有适量的例子和重要的应用,以及少量习题,以加深对相关概念和方法的理解。本书强调几何背景,着重介绍几何直观比较明确的一些定理,定理的证明也以经典微分几何方法为主。

    • ¥26.4 ¥48 折扣:5.5折
    • 射影几何入门
    •   ( 6 条评论 )
    • 李建华 /2021-09-01/ 科学
    • 本书以圆锥曲线的直观认识为起点,阐释了仿射变换、射影变换等射影几何的基础理论知识,论述上尽量做到既朴实直观又系统严谨,并注意数学思想和方法的渗透,是一本射影几何学的入门读物。

    • ¥20.33 ¥38 折扣:5.4折
    • 解析几何
    •   ( 39 条评论 )
    • 石勇国,彭家寅 /2024-11-01/ 科学出版社
    • 全书共分4章,第1章作为解析几何的主要基础,引入向量,建立坐标系,介绍了向量运算的定义、性质、计算以及应用。第2章建立了空间直线和平面的方程;讨论了点、线、面位置关系的判定;定义并计算了点、线、面的相关距离以及线、面之间的相关夹角;展示了平面束在求直线、平面方程上的应用。第3章利用轨迹建立了柱面、锥面、旋转曲面的方程;给出了二次曲面和直纹面的方程,描述了它们的性质、作图、手工制作的方法。第4章利用坐标变换和实对称矩阵的性质,对二次曲面进行了完整的分类。

    • ¥16 ¥29 折扣:5.5折
    • 画法几何
    •   ( 5 条评论 )
    • 郑国权 等编著 /2013-07-01/ 同济大学出版社
    • 《21世纪普通高等院校土木工程和建筑类专业教材:画法几何》是普通高等院校土木工程和建筑类专业教材。主要内容有正投影图,包括点、直线、平面、直线与平面、曲线、曲面、投影变换、平面与立体相交、直线与立体相交和两立体相交;轴测投影;标高投影;阴影和透视投影等。 《21世纪普通高等院校土木工程和建筑类专业教材:画法几何》按照由浅入深、循序渐进的原则来编写,说理清楚,重点突出,图文并茂,通俗易懂。通过学习,可逐步建立和加强学生的图示、图解能力和空间思维能力。与《21世纪普通高等院校土木工程和建筑类专业教材:画法几何》配合使用的《画法几何习题集》由同济大学出版社同时出版。为了帮助广大学生学好“画法几何及工程制图”课程,同济大学出版社还出版了《画法几何解题指导》,可供学生学习、解题时参考

    • ¥15.2 ¥29 折扣:5.2折
    • 画法几何习题集
    •   ( 3 条评论 )
    • 郑国权 等编著 /2013-07-01/ 同济大学出版社
    • 本习题集内容有:正投影中点,直线,平面,投影变换,点、线、面与投影变换测验作业;平面立体、曲线曲面、曲面立体,平面、直线与立体相交,两立体相交,轴测投影,平面立体、曲面立体、立体与立体相交测验作业;标高投影,阴影,透视,透视测验作业,并附有部分习题解答。 本习题集供普通高等院校中,土木工程和建筑类各专业的“画法几何及工程制图”以及“画法几何及阴影、透视”课程使用。其中,正投影和轴测投影部分也可供其他工程专业选用。该习题集是同济大学出版社同时出版的21世纪高等院校土木建筑类专业教材《画法几何》的配套书。 为了帮助广大学生学好“画法几何及工程制图”课程,同济大学出版社还出版了《画法几何解题指导》,可供学生学习、解题时参考。

    • ¥13.1 ¥25 折扣:5.2折
    • 《数学中的小问题大定理》丛书?坐标法(5-12) (5-12) 哈尔滨工业大学出版社
    •   ( 2 条评论 )
    • 无 /2013-12-01/ 哈尔滨工业大学出版社
    • 作者方运加以通俗易懂的语言阐述了坐标的概念,从一些简单的几何问题人手,讲述了利用坐标法分析问题与解决问题的基本方法,对比了坐标法、代数方法与几何方法在解题思路、方法的不同特点。在介绍一些基础性的以及若干较复杂但饶有趣味的问题在应用坐标法解题的过程中,使读者清楚地看到坐标概念是代数学与几何学结合的桥梁与一个学科分支――解析几何学――的产生和发展的必然性,并了解它成为强有力的数学工具的基本内涵。 《坐标法》是读者学习解析几何以及高等数学的一本启蒙书,它无论在学习与掌握坐标法还是在建立新的数学观念方面,以及对中学生的数学素养的提高,都会起到良好的作用。本书对大学、专科学校学生也有参考价值。

    • ¥15.5 ¥28 折扣:5.5折
    • 画法几何解题指导
    •   ( 109 条评论 )
    • 顾文逵缪临平 编著 /2014-01-01/ 同济大学出版社
    • 《画法几何解题指导/高等院校教学辅助读物》是根据*高等学校工程制图教学指导委员会制定的《高等学校工程制图课程教学基本要求》,在参考了国内外相关院校该课程教学实践的基础上编写而成的。内容按教学顺序编排,包括:点,直线,平面,直线与平面及两平面间的相互关系,点、直线、平面的综合题,投影变换,曲线、曲面,立体的投影及其表面上的点线,平面与立体截交,直线与立体贯穿,两立体相贯,立体的表面展开,轴测投影与阴影。共十三章。每章均附有例题,以启发学生的空间思维,培养其正确的解题思路。 本书可供理工科高等院校(包括电大、职大、函大及网络学院等)与画法几何相关的学生使用,也可供中等专科学校制图教师教学时参考,还可给工程技术人员在图解空间几何时提供帮助。

    • ¥16.7 ¥32 折扣:5.2折
    • 组合几何(第2版)/数林外传系列
    •   ( 57 条评论 )
    • 单墫|责编:项赟飚 /2011-12-01/ 中国科大
    • 这本小册子也是一本问题集。前面有8章,每章都有许多例题与问题, 还有一章研究问题,一章未解决的问题。 章与章之间无前因后果的关系,而且除第1章(系统介绍一个问题)外,各章内部的例题亦无太多的联系。实际上组合数学,特别是组合几何,并无统一的方法,不同的问题往往需要进行不同的处理。这 不意味组合几何是一盘散沙,这各具个性的问题与方法,恰好形成组合几何鲜明的特点。正因为有众多的问题,而且没有固定的方法,组合几何吸引了许多数学家(包括专业与业余两方面)的浓厚兴趣。

    • ¥13.3 ¥26 折扣:5.1折
    • 几何明珠
    •   ( 146 条评论 )
    • 黄家礼 编著 /2014-01-01/ 国家行政学院出版社
    • 黄家礼编著的《几何明珠(第3版)》以著名的平面几何定理为素材,系统地介绍了这些定理的历史渊源及各种巧妙简捷的证明与解法,得出许多美妙有趣的引申和推广,并挖掘出这些定理在解题中的一些典型新颖的应用。全书内容丰富、通俗易懂、深入浅出、妙趣横生,对激发兴趣,锻炼机敏的思维能力将大有裨益。《几何明珠(第3版)》可作为大、中学生的课外读物,也可作为中学数学教师的教学参考资料。该书版于1997年由科学普及出版社出版,并获2001年湖北省优秀论著一等奖;第二版于2000年由台湾九章出版社出版。

    • ¥21.5 ¥39 折扣:5.5折
    • 数的几何引论
    •   ( 253 条评论 )
    • 朱尧辰 /2019-05-20/ 中国科学技术大学出版社
    • 数的几何是数论的一个经典分支。本书给出它的基本结果和一些数论应用。基本结果包括凸体和格的性质,Minkowski和第二凸体定理,Minkowski-Hlawka容许格定理,Mahler列紧性定理,二次型的约化理论及堆砌与覆盖等;数论应用有四平方和定理及Hurwitz逼近定理等的证明。本书以大学理工科有关专业高年级学生和研究生为主要对象,也可供有关研究人员参考

    • ¥24.8 ¥45 折扣:5.5折
    • 点集拓扑学简明教程
    •   ( 107 条评论 )
    • 杨鎏 /2017-03-01/ 地质出版社
    • 拓扑学是数学中非常重要的一个分支,已经发展 出点集拓扑学、代数拓扑学、几何拓扑学和微分拓扑 学等多个学科。其中点集拓扑学也称为 一般拓扑学 。杨鎏*的《点集拓扑学简明教程》介绍了点集拓 扑学的基本概念,以及拓扑空间的连续不变性等重要 性质,并探究了构造拓扑空间的几种方法。全书内容 涉及拓扑空间的连续性、分离性、紧致性和连通性, 以及子空间、积空间、商空间、紧致空间、一致空间 、度量空间和函数空间。本书内容通俗易懂,叙述深 入浅出,适合本科阶段数学、物理专业的学牛研读或 学习。

    • ¥25.2 ¥42 折扣:6折
广告