本书为日本数学家、菲尔兹奖得主广中平祐的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、*子教育中培养创造性思维的原则与方法。本书是广中平祐先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚*成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。 我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学*几何有一点帮助 .
此书是晚清中西文化交流的结晶,是日中英文化交流的合璧。书中所阐发的西方文化思想之精义,使当时人耳目为之一新;书中又包含着以儒家为主的中国文化精神。
在了解这个世界的过程中,现实经常会挑战我们的感官和直觉,让我们震惊不已。这时,数学*像一把雨伞,当撑开这把雨伞时,我们仿佛进入了一个奇特的境界,有了迈向真相、行走在谜团中的勇气;当收起这把雨伞时,我们会发现自己的认知已大不一样,所谓的“理所应当”和“显而易见”将被摒弃,现实背后隐藏的真相将带来巨大的启发。这*是数学的力量。 从代数、几何到相对论,从温度计到黑洞,作者用简洁而生动的笔触阐释了如何更好地思索、观察与理解世界。让我们带上好奇心,撑开数学这把大伞,在宇宙的奥秘中漫步,体会解开疑惑后,如雨过天晴般的愉悦。
勾股定理应该是大家非常熟悉的数学定理,但你知道它在最初被发明时的作用吗?勾股定理早在古埃及时代就被用来测量土地的面积。数学中有非常多的数学定理,它们不仅是数学书中一连串用符号表示的公式,还与我们的日常生活息息相关。本书在介绍了许多比较重要的数学定理的同时,更强调了逻辑思维能力和解决问题能力的重要性。本书适合小学高年级和中学生阅读。
《考研专业硕士系列丛书:经济类联考综合能力核心笔记·数学(2013)》针对经济类联考综合的数学部分,依据经济类联考综合考试大纲,结合历年真题具体要求以及考试的资讯编写,力求地再现考试的考查内容以及对考生的能力要求,限度地帮助考生提高复习效率。
作为我国高等教育组成部分的自学考试,其职责就是在高等教育这个水平上倡导自学、鼓励自学、帮助自学、推动自学,为每一个自学者铺就成才之路。组织编写供读者学习的教材就是履行这个职责的重要环节。毫无疑问,这种教材应当适合自学,应当有利于学习者掌握和了解新知识、新信息,有利于学习者增强创新意识,培养实践能力,形成自学能力,也有利于学习者学以致用,解决实际工作中所遇到的问题。
作为我国高等教育组成部分的自学考试,其职责就是在高等教育这个水平上倡导自学、鼓励自学、帮助自学、推动自学,为每一个自学者铺就成才之路。组织编写供读者学习的教材就是履行这个职责的重要环节。毫无疑问,这种教材应当适合自学,应当有利于学习者掌握和了解新知识、新信息,有利于学习者增强创新意识,培养实践能力,形成自学能力,也有利于学习者学以致用,解决实际工作中所遇到的问题。
周凯、邬学军、宋军全编著的《数学建模》以数学建模所涉及的常用数学方法(类型)为主线进行编排,内容包括:数学建模概述;数学建模方法示例;优化数学模型;图与网络数学模型;评价管理数学模型;预测分析数学模型;微分与差分方程数学模型;服务系统数学模型;统计分析数学模型;启发式算法简介。每一章讨论一种类型的模型,以应用为目的,不做过多的数学理论阐述,通过例子介绍如何使用该方法来解决实际问题。所用实例大部分来自于各种形式的数学建模竞赛,当然一篇完整的竞赛论文往往不仅仅只是一种数学方法的使用,所以在本书中一般只是给出该例子的解题思路及主要过程,它往往只是问题的部分解,一般只涉及与这一章的数学方法有关的内容。一篇的竞赛论文往往是多种数学方法以及各种工具的综合运用,它是一个团队综合能力的具体展
本书着重介绍了人工神经网络、遗传算法和模糊逻辑的基本模型、理论及算法及其在工程技术中的应用,如分类器、数据挖掘、现代优化方法和模糊控制,并且给出了基于MATLAB的数值实验,本书每章后均配有习题,以供学生复习、巩固书中所学知识。
本书是“十一五”*规划教材,详细介绍了世界范围内1l位具有代表性的技术哲学家的技术哲学思想。本书注重史论结合、比较研究和系统分析,分别从工程学的技术哲学、技术哲学的人文关怀、社会批判的技术哲学、技术哲学的功能论解释和技术哲学的综合理论这五个方面展开论述。本书可作为哲学社会科学和工程技术科学相关专业的本科生和研究生的参考文献,也可作为关注技术与人类生活关系的思考者的基本读物。
本书基于麻省理工学院开设的概率论入门课程编写,内容*,例题和习题丰富,结构层 次性强,能够满足不同读者的需求。书中介绍了概率模型、离散随机变量和连续随机变量、多元随机变量以及极限理论等概率论基础知识,还介绍了矩母函数、条件概率的现代定义、独立随机变量的和、*小二乘估计等*内容。
外经典教材辅导系列是一套全面解析当前外各大院校教科书的学习辅导资料。张成福、党秀云著的《公共管理学》是的标准公共管理学教材之一。本书遵循修订版的章目编排,共分为l5章,每章由三部分组成:部分为复习笔记,总结本章的重难点内容;第二部分是课(章)后习题详解,对修订版的所有习题都进行了详细的分析和解答;第三部分为考研真题详解,精选部分名校近年的考研真题,并提供了详细的参考答案。 圣才学习网/圣才考研网(.100exam.tom)提供张成福、党秀云《公共管理学》等外经典教材名师讲堂、各种管理类考试辅导方案(保过班、面授班、网授班等),并精心制作了面授班与网授班的全套授课光盘。购书享受大礼包增值服务 100元网授班 20元真题模考 20元圣才学习卡 。本书特别适用于各大院校学习该教材的师生以
数学是关于数的学问吗?数学是人类的发明还是人类的发现?为什么数学看起来那么抽象深奥?为什么说数学是万学之学? 本书以数学的产生和发展历程为主线,通过数学人物和历史事件对这些问题进行寻根溯源,讲述了一个关于数学渊源的故事,为读者描绘了一幅生动有趣、绚丽迷人的历史画卷。 在本书中,作者把数学的主要分支、理论和应用介绍给读者,其中既没有各种复杂艰深的数学公式和推理证明,也没有大量生僻的数学专业术语,条理清晰,语言通俗易懂。通过阅读本书,读者可以了解数学是怎么诞生的以及什么是数学这两个基本问题,从而以不一样的眼光看待数学这一人类智慧。 本书可供对数学感兴趣的读者阅读。