本书以中考数学难题和外初中数学竞赛为背景,按照初中数学课程的进度分专题编写,在内容的安排上力求与课堂教学同步,在夯实基础的同时,通过新颖、有趣的数学问题,构建通往中考数学和初中数学竞赛的捷径;在有利于学生把初中数学教材的知识巩固深化的同时,恰到好处地为学生拓宽有关中考和竞赛数学的知识;以中考数学和初中数学竞赛中的热点、难点问题为载体,介绍竞赛数学中令人耳目一新的解题方法与技巧,激发学生创新与发现的灵感,开发智力,提高水平去参加中考数学和初中数学竞赛.本书可供初中数学资优生,准备参加初中数学竞赛及中考的学生,中学数学教师、数学爱好者、高等师范院校数学教育专业大学生、研究生及数学教师参考.
本书根据深化义务教育课程改革的指导意见编写,符合《义务教育数学课程标准(2011年版)》的要求,与现行数学教科书内容同步,但又教科书中的内容,可作为拓展性课程教材,也可作为科普书籍供师生使用。 书中内容是教科书中相对应内容的补充和拓展。补充内容,尤其是数学名人名题有助于学生了解数学发生和发展的过程;拓展内容可以让学生了解数学的近现代发展状况及其与现代科技的联系,让学生认识到数学的广泛应用。
参数辨识为系统参数计算提供解决手段,进而为对象的表征、分析、优化、控制等应用提供模型基础。准则函数是系统参数辨识的要素,影响辨识的各个方面,包括参数可辨识性、辨识精度、算法复杂性及鲁棒性等。作为新型准则函数,信息准则为系统辨识开辟了崭新途径,成为信号处理与系统模型参数辨识相关领域的重要研究方向。《系统参数辨识的信息准则及算法》系统地介绍系统参数辨识的各种信息准则及相应辨识算法、算法特性分析,包括误差熵准则、信息距离准则、(小)互信息准则等,介绍了其基本概念和性质、实现算法及仿真算例。 《系统参数辨识的信息准则及算法》可供系统辨识与信号处理、系统控制、人工神经网络、模式识别、神经及认知科学等学科或领域的科技工作者阅读,也可供这些领域的研究生和本科生参考。
A First Course in Nonmutative Rings, an outgrowth of the author' s lectures at the University of California at Berkeley, is intended as a textbook for a one-semester course in basic ring theory. The material covered includes the Wedderburn-Artin theory of semisimple rings, Jacobson' s theory of the radical, representation theory of groups and algebras, prime and semiprime rings, primitive and semiprimitive rings, division rings, ordered rings, local and semilocal rings, perfect and semiperfect rings, and so forth. By aiming the level of writing at the novice rather than the connoisseur and by stressing the role of examples and motivation, the author has produced a text that is suitable not only for use in a graduate course, but also for self-study in the subject by interested graduate students. More than 400 exercises testing the understanding of the general theory in the text are included in this new edition.
本书介绍和讨论了非晶合金塑性变形研究中的数学方法及应用问题。全书共七章,首先介绍非晶合金塑性动力学的研究背景和混沌初步理论;然后介绍相应的数学方法,如时间序列分析、自组织临界理论、分形、多重分形、波动分析法等,以及近几年我们应用这些理论在非晶合金塑性变形中的研究进展;另外,我们还给出一个室温下非晶合金塑性变形的数学模型及模型分析。本书内容属于材料数学研究领域,包含了多个学科(数学、材料、统计、物理、力学等领域)的交叉与融合,可为从事这些领域的研究工作者提供参考。本书可以作为相关科研人员的工具用书,也可作为研究生及高年级本科生教学用书。
本书内容共分两部分,部分带有丰富的插图和问题,题材较具趣味性,属于科普性质,目的是让读者提高学习数学的兴趣和开阔眼界,拓展深度,但是其中也安排了量较有难度和深度的课题和问题,可供读者日后提高之用。具有初中至大学低年级水平的读者都可在其中找到适合自己的内容。本书第二部分虽然也包括了一些趣味性的内容,但专题性较强,集中介绍了和斐波那契数有关的内容和问题,其中大部分内容具有高中程度即可理解,但最后两节需要读者具有初等数论的知识,包括二次剩余的理论才能理解。本书适合具有初中至大学低年级数学程度的学生、数学爱好者、中学和大学教师及有关的科研工作者阅读和参考。
《无穷小量的求和》介绍了无穷小量的求和的基本内容以及该内容在各门数学中的应用,书中每一节都配有相应的例题与解答,以供读者更好地掌握相关知识.《无穷小量的求和》适合于中学生、中学教师以及数学爱好者阅读参考。
《赢在思维:初中数学拉分题满分训练》套书以各类练习和考试中的能拉开成绩的题为主体,从技巧贴士和思路点评出发,指导学生学会思维方法,引导学生将每种方法和思路逐步转化为自己的理解,从而达到举一反三的目的。