The guiding principle in thiook is to use differential forms as an aid in exploring some of the less digestible aspects of algebraic topology. Accordingly, we move primarily in the realm of smooth manifolds and use the de Rham theory as a prototype of all of cohomology. For applications to homotopy theory we also discusy way of analogy cohomology with arbitrary coefficients. Although we have in mind an audience with prior exposure to algebraic or differential topology, for the most part a good knowledge of linear algebra, advanced calculus, and point-set topology should suffice. Some acquaintance with manifolds, simplicial plexes, singular homology and cohomology, and homotopy groups is helpful, but not really necessary. Within the text itself we have stated with care the more advanced results that are needed, so that a mathematically mature reader who accepts these background materials on faith should be able to read the entire book with the minimal prerequisites.
本书致力于中考数学命题的研究,旨在帮助学生在中考中获得高分和满分,同时也供其他教学人员学习和参考之用.本书内含各种类型数学中考压轴题,内容全面实用.总结常用几何辅助线与常见几何模型,帮助考生在考试中快速找到解题的突破口;归纳各种函数压轴题题型,帮助考生了解命题的意图,顺利扫清思维障碍,获得满意答案.本书还总结了各种实用的解题技巧,简单高效.部分题目一题多解,拓展学生的思维.
本书将矩阵的分析分为梯度分析、奇异值分析、特征分析、子空间分析与投影分析五大部分,以一种新的体系、系统、全面地介绍矩阵分析的主要理论、方法及应用。全书共10章,内容包括矩阵与线性方程组、特殊矩阵、Toeplitz矩阵、矩阵的变换与分解、梯度分析与化、奇异值分析、总体最小二乘方法、特征分析、子空间分析、投影分析。本书取材广泛,内容新颖,理论与应用密切结合。书中介绍了矩阵分析的丰富理论和大量生动应用,可以帮助读者学会如何使用矩阵这一重要数学工具,灵活解决科学和工程技术中的大量问题。 本书适合于需要矩阵知识比较多和比较深的理科(数学、物理、力学等)和信息科学与技术(电子、通信、自动控制、计算机、系统工程、模式识别、信号处理等)等各学科有关教师、研究生和科技人员教学、自学或进修之用。书中归纳了
《数学符号理解手册》生动地描述了符号们的成长历程,由浅入深地概括了数学公式,呈现了数学结构。不知不觉中,枯燥的数学公式深深地印入你的脑海之中。这一篇篇的小故事幽默地、-、×是什么时候、在哪儿诞生的?f为什么长成钩子的模样?10g的词源是什么?诞生虚数i的真实理由是什么?大数学家莱布尼兹在哪儿出错了?什么情况下,三角形内角和不是180度?四维空间在哪里?有没有长着四个角的圆?∈-8语言是浪漫的异性相吸?△不是三角形的符号,那么它又是什么形状的符号呢?这一个个疑问在《数学符号理解手册》中能找到答案。
这是一本供初三毕业生复习迎考、研究压轴题、挑战满分的书;这是一本供数学教师继续教育学习、研究现代教育技术与中学数学课程整合的参考书;这是一本用《几何画板》、《超级画板》动态研究中考数学压轴题的书;这是一本以中考数学压轴题为载体学习《几何画板》、《超级画板》的书;这是一本数学课件资源的素材库。每道压轴题由4个板块组成:动感体验是这本书的特色,先打开这道题对应的光盘文件,在认真阅读理解题意的基础上,按照提示拖动屏幕上的主动点,在图形运动的过程中把握规律、理解内涵、探求关系;思路点拨也是这本书的一个靓点,它在解读这道压轴题所考察的数学思想和数学方法,挑出解答这道压轴题的突破口,指出这道题目的难点;满分解答是比较规范、简练地对这道题目进行解答;考点伸展是我们在动态研究压轴题的过程中,