本书以全国研究生入学考试大纲为编写依据,结合近年来线性代数的命题特点及学生在复习线性代数中常遇见的问题编写而成。本书可作为研究生入学考试线性代数的参考教材,也可作为大学非数学专业本科生及相关人员的参考书。考生只需按照书中的知识体系和进度安排进行复习,就可以轻松掌握考研数学的线性代数部分。
1.真题内容覆盖2009-2023年,有利于考生提高总结,有针对性的进行练习,复习系统有序。 br 2.真题排版,营造考场氛围。试题册仿照真题排版,真实还原考场。能让考生自行选择操练模式,无论练习或是自测,都可以完成对每一套试题的理解和知识点的掌握。 br 3.逐题详解,多种解法拓宽解题思路。解析册单独胶订成册,所用解题方法能够快速有效的解决问题,部分题目用到多种解题方法,利于考生拓宽解题思路,提高考生分析问题和解决问题的能力。 br
.
.
本书在*制定的考研数学考试大纲的指导下,依据考试大纲的编排顺序,按考点对历年(2002 2021)真题分类,对各类题型进行详细归纳和总结,给出了各类题型的解题思路、方法和技巧,使考生能达到举一反三、触类旁通的能力。同时,考生通过本书复习时,有助于掌握历年试题的核心内容,便于发现考研数学试题反复出现的共性问题,能从共性问题中发现命题规律和命题趋势,找出考点之间的有机联系,明确各部分考点内容的重点、难点。本书在理论推导和文字叙述等方面由浅入深,易于接受,真题解答详尽,便于自学;本书尽量做到一题多解,并对每一道真题给出解题思路,以便更好地提高考生的解题能力。
本书是数学类专业考研复习用书。全书共分八讲。讲介绍极限的思想、各种求解方法和证明极限存在的各种技巧;第二讲介绍函数一致连续性的思想和证明方法及技巧;第三讲介绍与微分中值定理(包括泰勒公式)有关的思想和解决问题的方法;第四讲介绍定积分的重要计算技巧和证明函数可积性的方法;第五讲介绍各类级数收敛性的判别方法和技巧,并对函数项级数和函数性质进行了详尽的讨论;第六讲介绍多元函数的各种性质及应用;第七讲介绍各类积分的计算方法和技巧,特别是第二类曲面积分;第八讲介绍证明不等式的常用方法和技巧。
.