本书是以《普通生物学》(第四版)高教版为蓝本,专门针对全国中学生生物学联赛、竞赛考试而精心编写的同步辅导。编排上,依据蓝本教材章节内容和生物学竞赛考试大纲,全书分为三部分。入门篇,针对中学生生物竞赛考试做的一个知识点整理;基础巩固篇,共7章,每章由知识概要、重要名词、学习指南、联赛题解精粹、思考练习与解析、同步强化训练五部分组成;提高篇,精选了全国中学生生物竞赛考试试题,以供读者冲刺练习。 本书可用于参加全国中学生生物学联赛、竞赛考试的高中生学习用书,也可供生物学教师和生物学爱好者阅读参考。
本书是 国家理科基地创建名牌课程项目 的研究成果,其目的是为数学分析的习题课教学提供一套具有创新特色的教材和参考书。 本书以编著者们多年来在数学分析及其习题课方面的教学经验为基础,吸取了国内外多种教材和研究性论著中的大量成果,非常注意经典教学内容中的思想、方法和技巧的开拓和延伸,在例题的讲解中强调启发式和逐步深入,在习题的选取上致力于对传统内容的更新、补充与层次化。本次修订对第1版的基本框架(指章、节和小节)和主要内容(指命题、例题、练习题和参考题)基本上不做改动,但对书中一些证明、解法和注释等做了多处改进;增加了练习题和参考题的层次性;对部分较难的参考题的提示进行了改进。本书分上、下两册出版。上册内容为极限理论和一元微积分,下册内容为无穷级数和多元微积分。 本书可作为高等院校理
本书是以《陈阅增普通生物学》(第5版)为蓝本编写的学习辅导书。由于蓝本教材章节较多,本书对教程内容进行了整合调整,编排为11章。每篇主要包括知识结构图、章节习题全解、考研典型真题和全真模拟练习几个部分。
本书是* 国家理科基地创建名牌课程项目 的研究成果,其目的是为数学分析的习题课教学提供一套具有创新特色的教材和参考书。 本书以编著者们多年来在数学分析及其习题课方面的教学经验为基础,吸取了国内外多种教材和研究性论著中的大量成果,非常注意经典教学内容中的思想、方法和技巧的开拓和延伸,在例题的讲解中强调启发式和逐步深入,在习题的选取上致力于对传统内容的更新、补充与层次化。本次修订对第1版的基本框架(指章、节和小节)和主要内容(指命题、例题、练习题和参考题)基本上不做改动,但对书中一些证明、解法和注释等做了多处改进;增加了练习题和参考题的层次性;对部分较难的参考题的提示进行了改进。 本书分上、下两册出版。上册内容为极限理论和一元微积分,下册内容为无穷级数和多元微积分。 本书可作为高等院校
本书为《陈阅增普通生物学》(第4版)的配套辅导书,共分为11章,每章由考点综述、名词术语、考研精粹、模考精练、习题详解五大部分组成。本书的主要特点是:结合权威教材,解析重点难点;内容充实,突出考试重点;例题种类全面,讲解清晰明了,方法性强。
本书按教材内容安排全书结构,各章均包括学习导引,知识要点及常考点,本节考研要求,题型、真题、方法,课后习题全解五部分内容,针对各章节习题给出详细解答,思路清晰、逻辑性强,循序渐进地帮助读者分析并解决问题,内容详尽、简明易懂。 本书可作为高等院校 高等数学 课程的辅助教材,也可座位考研人员复习备考和教师备课命题的参考资料。
基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。
本书是为了配合华东师范大学数学科学学院编写,高等教育出版社出版的《数学分析(第五版 上册)》一书而编写的配套辅导书。 本书共有11章,分别介绍实数集与函数、数列极限、函数极限、函数的连续性、导数与微分、微分中值定理及其应用、实数的完备性、不定积分、定积分、定积分的应用、反常积分等内容。本书按教材内容安排全书结构,各章基本都包括本章导航、各个击破、课后习题全解、走进考研四部分内容;对各章的重点、难点做了较深刻的分析,针对各章节全部习题给出详细解题过程,并附以知识点窍和逻辑推理,思路清晰、逻辑性强,循序渐进地帮助读者分析并解决问题。各章还附有典型例题与解题技巧,以及历年考研真题评析。 本书可作为数学和其他相关专业学生学习 数学分析 课程的辅导材料和复习参考用书,也可作为数学专业学生考
庄楚强、何春雄编*的《应用数理统计基础(第4 版)》介绍经典的数理统计理论与方法,内容包括初等概率论知识的复习、抽样分布、参数估计、假设检验、方差分析和试验设计,还简要介绍数据挖掘及统计学习、R软件等较为现代的统计方法和工具。书中有较多例题并附有例题求解的R软件参考程序,各章配有习题,书末附有习题答案。 《应用数理统计基础(第4版)》适用于了解概率论基础知识和具有使用计算机软件基本经验的读者阅读。可作为高等院校非数学专业硕士研究生数理统计课程的参考教材,也可供在自然科学、管理科学、社会科学、经济与金融科学等诸多研究领域中用到统计科学的科研工作者参考。
本书按教材内容安排全书结构,各章均包括学习导引,知识要点及常考点,本节考研要求,题型、真题、方法,课后习题全解五部分内容。全书按教材内容,针对各章节习题给出详细解答,思路清晰,逻辑性强,循序渐进地帮助读者分析并解决问题,内容详尽,简明易懂。 本书可作为高等院校学生学习《高等数学》(第七版 上册)课程的辅导教材,也可作为考研人员复习备考的辅导教材,同时可供教师备课命题作为参考资料。
为降低线性代数这门数学的分支学科的学习难度,让有需要的读者饶有兴趣地学习,本书认为用空间思维来学习数学是*好的做法。全书坚持 三用 的特点,即用图形来表达、用表格来总结、用练习来巩固。全书内容共10章,分为3个学习阶段。第1阶段(回顾知识并打下空间思维的基础)包括函数、向量;第2阶段(理解计算并在空间中变换)包括行列式、矩阵及其运算、几个特殊的矩阵、线性方程组;第3阶段(加深认识并在空间中思考)包括基底与变换、向量的投影、相似变换与相似矩阵、矩阵的分解。全书内容建议读者在脑海里思考空间的架构、空间中的各种变换,从而可以轻松地学习线性代数的知识。 本书适合线性代数的初学者、成人自学者、大学本专科学生、研究生使用,也可作为工程技术人员的参考用书。
.
微积分入门 为日本数学家小平邦彦晚年创作的经典微积分著作,有别于一般的微积分教科书,本书突出 严密 与 直观 的结合,重视数学中的 和谐 与 美感 ,讲解新颖别致、自成体系,论证清晰详尽、环环相扣,行文深入浅出、流畅易读,从原理、思想到方法、应用,处处体现了小平邦彦的深厚功力与广阔视野。作者着眼数学分析的深处,结合自身独到的思考与理解,从严谨的实数理论出发思谋微积分,通过巧妙引导,启发读者自主思考,提升对微积分的领悟理解程度。 本书是小平邦彦为后人留下的一份重要文化财富,不仅值得数学专业人士研读,对于需要微积分知识的其他理工科学生和专业人员也具有深刻启示。