特征选择是机器学习的重要研究内容,有着广泛的应用价值。特征选择主要从数据(尤其是高维数据)中选取有效特征来表示数据,从而提高机器学习算法的性能。《高维数据的特征选择:理论与算法》以重庆工商大学等单位的机器学习、图像处理课题为基础,系统地介绍特征选择的基本概念,以及相关的理论和算法,也对它的前沿研究(如无监督特征选择)和其在计算机视觉中的应用进行详细介绍,最后对特征选择的发展方向进行展望。 《高维数据的特征选择:理论与算法》理论联系实际,对教学、科研具有重要指导意义,可作为高等院校和科研机构从事机器学习的学者的参考书,亦可供从事大数据分析(如基因数据、计算机视觉)的专业技术人员参考。
《数据质量管理基础》正文由7章组成(重点考虑关系型结构化数据):章简介数据质量问题;第2章展开讨论条件依赖理论;第3章阐述发现条件依赖,以及基于发现条件依赖检测数据不一致、修复数据的实践技术;第4章介绍依赖匹配作为数据去重的匹配规则;第5章重温经典的两个信息完整性假定,即封闭世界假定和开放世界假定,并提出和研究相对信息完整性理论;第6章进行数据时效性建模,以便时间戳缺失情况下,在数据库中进行实体值辨别并基于此返回查询结果;第7章探索数据质量问题之间的交互作用。
本书是在作者多年从事数据挖掘行业实践和相关科学研究的基础上编写而成,书中包括数据挖据理论研究及实际应用的现状分析、研究内容的组织框架、研究方法与技术路线的描述、数据挖掘理论及应用的综述、不确定性理论、多目标优化的分类器方法、模糊多目标优化的分类器模型和算法、基于粗糙集和统计贡献度的特征选择算法、基于粗糙集预处理和粗近似的多目标优化的分类器模型和算法以及基于模糊化、核方法和惩罚因子的多目标优化的分类器模型和算法等内容。本书含有不确定性多目标优化的数据挖掘在信用评分、Web客户忠诚度分析、蛋白质交互的热点区域预测以及重大疾病的医疗诊断和预测等几个经典领域中的实际应用的描述。最后,通过对研究内容和实际应用效果的总结,展望了进一步研究和应用的方向。本书可供从事数据挖掘、机器学习与知识工
本书是作者及所在课题组近年来关于数据驱动全局优化方法研究成果的总结。先介绍数据驱动优化方法的发展现状、关键技术及常用的测试函数,然后介绍基于空间缩减的全局优化方法、基于混合代理模型的全局优化方法、基于多代理模型全局优化方法、代理模型辅助的约束全局优化方法及离散全局优化方法、代理模型辅助的高维全局优化方法。本书介绍的数据驱动全局优化方法优化效率高,新颖性和先进性强,可广泛用于解决工程优化问题。
为推广数据中心的建设技术,贯彻执行国家标准,本书总结了数据中心供配电系统、空调系统、机柜系统和布线系统的理论和实践经验,阐述了数据中心用电设备对于电能的基本要求,介绍了数据中心环境要求、设备布局、空调系统规划、未来的发展趋势以及数据中心空调系统的评估和优化。