近年来,随着Web技术的发展和应用的普及,大量用户将线下行为转移到线上进行,并且通过各种社会媒体随时随地进行社会交互和情感表达。这些海量的社会行为形成的大数据,催生了社会计算这个新的跨学科的研究和应用领域。《清华大学学术专著·社会计算:用户在线行为分析与挖掘》在大数据的时代背景和社会计算的框架下,介绍从大量用户在线行为数据中发现其中隐含的用户行为模式和兴趣偏好的方法和技术。全书主要内容分为7个部分,分别介绍用户在线搜索行为、网上购物行为、浏览行为、社会标注行为、评论行为以及社交行为等方面的数据分析技术和方法,涉及搜索意图的分析、购物模式的发现、周期行为的挖掘、标签的有效聚类、评论意见的挖掘、用户偏好的发现、个性化方法、链接分析以及社会网络的分析方法等研究内容。 《清华大学学术专
数据库的性能优化一直是DBA日常工作中非常重要的组成部分,然而很多DBA在学习了大量技术,参加了大量培训后,仍然会在实际工作中遇到难以下手的问题。实际上,在数据库优化工作中,方法和思路远比技术实现重要得多。 《DBA的思想天空:感悟Oracle数据库本质》重在介绍Oracle数据库的性能调优方法及相应的工作思路,但并不拘泥于技术细节。作者通过大量真实案例,深度剖析了相关技术原理,同时还阐述了理论知识在实践中的应用方法。优化工作的本质其实就是透过表象探寻根源,解决问题实现调优,正所谓 思路是道,操作方法是技 ,得道是极大的提升,也是DBA的思想精髓。 n
本书以国际数据挖掘标准流程(GRISP-DM)为依据,以企业管理面临的现实问题为应用案例,由浅入深介绍数据挖掘方法及其解决问题过程的数据理解、数据处理、数据分析、数学建模、模型结果评估等内容,并引人应用广泛的数据挖掘Clementine软件辅助问题案例的解决,使读者不仅可以集中地学习数据挖据的主要理论方法,而且可以了解基于数据挖掘的数学建模过程,可以学习应用软件辅助解决问题的操作方法。 本书把理论、案例、建模、软件辅助结合一体统一叙述,简述理论,突出应用,详细分析,展示过程,既考虑高校学生的学习需要,分本科生与研究生学习层次,又考虑企业管理者的应用与实践需要。 本书可作为数据挖掘理论与技术的教学、实践、应用和提高的教科书或参考书。适合高等学校本科高年级学生、研究生以及学习数据挖掘、数学模型课程的
本书是针对应用类本科、高职高专学生编写的Access数据库技术实用教程。本书包括数据库基础、Access基本操作、数据库的创建、表的设计与创建、对表的操作、创建查询、窗体和报表的设计、数据访问页、宏和模块等内容。 本书通过一个书店管理的数据库实例,以图文并茂的方式介绍Access数据库的使用方法,不仅在Access数据库的介绍过程中以具体的实例贯穿始终,而且在每部分都配有操作实例,使学生能够通过本书的学习快速掌握使用Access数据库的方法。本书可作为应用类本科和高职高专的Access数据库课程的教材,也可作为各类培训班和计算机爱好者的自学教材。
本书系统介绍以太坊智能合约的开发,对智能合约相关知识进行全面梳理,尤其是对智能合约开发语言Solidity进行了详细解读,智能合约的开发者可以从书中获得一些启发和指导。本书可以作为一本案头手册,方便开发者在开发智能合约时随时查阅。
本书全面而详细地讲述了关于数据仓库每一个重要部分的内容,包括计划、需求、体系、基础、结构、设计、数据准备、信息传递、配置和维护等。本书编排合理,每章提供本章主题,本章小结,可以使读者将每一个概念和技术同数据仓库的实践和市场结合起来;还提供复习思考题和练习供读者巩固学习到的知识。总之,本书几乎涵盖了数据仓库领域所有方面的知识,如果你想成为数据仓库领域专家,它是值得一读的。 本书是专门为IT专业人员而量身定做的介绍数据仓库知识的书籍,适合于想掌握数据仓库基础知识的系统分析员、程序员、数据分析员、数据库管理员、项目经理和软件工程师阅读,还非常适合作为大中院校相关专业的教科书或培训用书,供自学人员、大学课程或科研机构使用。
《大数据搜索与日志挖掘及可视化方案(第2版)》提出的分布式大数据搜索与日志挖掘及可视化方案是基于ELK Stack而提出的,它能有效应对海量大数据所带来的分布式存储与处理、全文检索、日志挖掘、可视化等问题。构建在全文检索开源软件Lucene之上的Elasticsearch,不仅能对海量规模的数据完成分布式索引与检索,还能提供数据聚合分析。据国际的数据库产品评测机构DB Engines的统计,在2016年1月,Elasticsearch已超过Solr等,成为排名的搜索引擎类应用;Logstash能有效处理来源于各种数据源的日志信息;Kibana能得出可视化分析结果。了解基于ELK Stack的大数据搜索与日志挖掘及可视化方案,掌握Elasticsearch、Logstash、Kibana的基本使用方法和技巧,很有必要。
Code Halo(数据场)是围绕在人们、设备、企业和行业周围的数据,通过破译这些数据所提供的信息和洞见,我们能够创造出新的商业模型,抓住此次基于数据场实现的技术变革所带来的巨大机遇,在数据场时代立于不败地位。书中呈现了抓住此次机遇的方式方法,以及如何在自己所处的行业内为此次机遇的到来做好万全的准备,并适时出手抓住这次机遇。
本书讲述在流行的大数据分布式存储和计算平台Hadoop上设计实现数据仓库,将传统数据仓库建模与SQL开发的简单性与大数据技术相结合,快速、高效地建立可扩展的数据仓库及其应用系统。 本书内容包括数据仓库、Hadoop及其生态圈的相关概念,使用Sqoop从关系数据库全量或增量抽取数据,使用HIVE进行数据转换和装载处理,使用Oozie调度作业周期性执行,使用Impala进行快速联机数据分析,使用Hue将数据可视化,以及数据仓库中的渐变维(SCD)、代理键、角色扮演维度、层次维度、退化维度、无事实的事实表、迟到的事实、累积的度量等常见问题在Hadoop上的处理等。本书适合数据库管理员、大数据技术人员、Hadoop技术人员、数据仓库技术人员,也适合高等院校和培训机构相关专业的师生教学参考。
本书以图书馆信息化为基点,从理论与实际应用角度,介绍了数据仓库与数据挖掘的概念、方法及在图书馆的应用。主要内容包括:以图书馆自动化集成系统日常工作中产生的数据为基础,详细介绍了应用微软SQL Server 2012数据仓库与数据挖掘工具进行图书馆数据仓库开发、数据集成服务、联机分析处理及常见数据挖掘技术挖掘过程。本书注重实践性,可操作性强,可作为企事业单位数据仓库与数据挖掘工作人员、研究人员参考用书
本书全面介绍了数据挖掘的理论和方法,旨在为读者提供将数据挖掘应用于实际问题所必需的知识。本书涵盖五个主题:数据、分类、关联分析、聚类和异常检测。除异常检测外,每个主题都包含两章:前面一章讲述基本概念、代表性算法和评估技术,后面一章较深入地讨论高级概念和算法。目的是使读者在透彻地理解数据挖掘基础的同时,还能了解更多重要的高级主题。此外,书中还提供了大量示例、图表和习题。 本书适合作为相关专业高年级本科生和研究生数据挖掘课程的教材,同时也可作为数据挖掘研究和应用开发人员的参考书。