Spark SQL 是 Spark 技术体系中较有影响力的应用(Killer application),也是 SQL-on-Hadoop 解决方案 中举足轻重的产品。《Spark SQL内核剖析》由 11 章构成,从源码层面深入介绍 Spark SQL 内部实现机制,以及在实际业务场 景中的开发实践,其中包括 SQL 编译实现、逻辑计划的生成与优化、物理计划的生成与优化、Aggregatio算子和 Joi算子的实现与执行、Tungste优化技术、生产环境中的一些改造优化经验等。
本书系统地介绍数据结构基础理论知识及算法设计方法,~7章从抽象数据类型的角度讨论各种基本类型的数据结构及其应用,主要包括线性表、栈和队列、串、数组和广义表、树和二叉树及图; 第8章和第9章主要讨论查找和排序的各种实现方法及其综合比较; 0章介绍数据结构课程实验的目的、步骤及内容; 录给出全书习题的参考答案。全书采用类C语言作为数据结构和算法的描述语言,随书配备电子教案。本书在内容选取上符合人才培养目标的要求及教学规律和认知规律,在组织编排上体现“先理论、后应用、理论与应用相结合”的原则,并兼顾学科的广度和深度,力求适用面广。本书具有结构严谨、层次清楚、概念准确、深入浅出、描述清晰等特点。
本书介绍了 PostgreSQL 内部的工作原理,包括数据库对象的逻辑组织与物理实现,进程与内存的架构。并依次剖析了几个重要的子系统:查询处理、外部数据包装器、并发控制、清理过程、缓冲 区管理、WAL、备份及流复制。本书为 DBA 与系统开发者提供了一幅全景概念地图,有助于读者形 成对数据库实现的整体认识,亦可作为深入学习 PostgreSQL 源代码的导读手册,对于理解数据库原 理与 PostgreSQL 内部实现大有裨益。 本书适合数据库开发人员及相关领域的研究人员、数据库 DBA 及高等院校相关专业的学生阅读。
这是一本系统剖析Greenplum开源大数据平台的书籍,也是大数据战略制定与落地的实战型指导书! 本书围绕数字原生和云计算、大数据、人工智能驱动的企业数字化转型的核心诉求,从商业和技术实战视角分享了业界领先企业大数据战略的深刻思考,并提供了大数据战略从制定到落地的全面指导。既有高阶数字化战略高度对大数据的解读,又有技术实战角度对使用 Greenplum 大数据和机器学习平台实现大数据战略的实践指南。 本书作者来自Greenplum 核心研发团队,致力于以开源、开放的理念和先进的技术推进大数据产业生态,助力企业以更低的成本、更高的效率实现数字化转型,并基于Greenplum 开源社区培养大数据产业更多人才。 本书分为四个部分。 部分介绍大数据战略。其中, 章将分享作者对于人工智能、大数据和云计算之间关系的理解以及对人和人工智能的思
本书讲述如何从技术和市场信息特别是专利信息中挖掘获得潜在的竞争情报,从介绍技术挖掘的基础概念、原理开始,讲解数据采集、基本分析、高级分析、趋势分析、专利分析的方法和技巧,给出技术挖掘指标组合,并结合具体案例指出技术挖掘过程中的注意事项,帮助读者了解技术挖掘流程和掌握技术挖掘方法。本书还列出了可供选择使用的科技数据库、技术挖掘软件的资源清单,为有意实际进行技术挖掘的读者提供了指引。 本书可作为技术研究人员,使用技术成果的分析人员和直接从事管理的人员的指导书,也可以作为技术分析机构和研究生课程的参考书。