本书围绕精益创业展开讨论,融合了精益创业法、客户开发、商业模式画布和敏捷/持续集成的精华。本书汇聚了100多位创始人、投资人、内部创业者和创新者的成功创业经验,呈现了 30 多个极具价值的案例分析,可以为各阶段的创业者提供行为准则。 如果你是一名创业者,或者你是一名产品开发、产品管理、市场营销、公共关系和投资领域的商务专业人员,那么本书不容错过。
《向量数据库:大模型驱动的智能检索与应用》系统地介绍向量数据库的原理、技术实现及其应用,重点分析传统数据库在处理高维向量数据时的局限性,并提供相应的解决方案。《向量数据库:大模型驱动的智能检索与应用》分为4个部分,共13章,内容涵盖从理论基础到技术实践的多个方面,详细讨论高维向量表示中的信息丢失、嵌入空间误差和维度诅咒等问题,结合FAISS和Milvus等主流开源工具,深入剖析向量数据库的索引机制、搜索算法和优化策略。通过实际案例,展示向量数据库在推荐系统、行为分析、智能诊断、语义搜索等领域的应用,并特别强调企业级语义搜索系统的开发与部署经验。 《向量数据库:大模型驱动的智能检索与应用》不仅提供深度的理论指导,还通过丰富的案例帮助读者掌握如何构建高效的向量搜索引擎,适合从事搜索引擎与推荐系统开发的
《Power BI商业智能数据分析与可视化》以DAX为核心线索,围绕数据分析和数据可视化,系统全面地介绍了Power BI的核心知识体系。 《Power BI商业智能数据分析与可视化》的主要内容包括数据分析和数据可视化基础知识,Power Query数据获取、转换与加载,Power BI数据模型,DAX基础和进阶知识、DAX的实践案例、DAX驱动数据可视化交互,仪表板开发实践、仪表板多场景应用,以及AI辅助学习等。 《Power BI商业智能数据分析与可视化》体系完整、重点突出、内容新颖翔实、案例贴近实际,适合数据分析师、Power BI分析人员、Excel高级用户,以及想提高数据分析能力的各类人员阅读。
本书结合理论和实践,由浅入深,全方位介绍了Hadoop这一高性能的海量数据处理和分析平台。全书5部分24章,第Ⅰ部分介绍Hadoop基础知识,主题涉及Hadoop、MapReduce、Hadoop分布式文件系统、YARN、Hadoop的I/O操作。第Ⅱ部分介绍MapReduce,主题包括MapReduce应用开发;MapReduce的工作机制、MapReduce的类型与格式、MapReduce的特性。第Ⅲ部分介绍Hadoop的运维,主题涉及构建Hadoop集群、管理Hadoop。第Ⅳ部分介绍Hadoop相关开源项目,主题涉及Avro、Parquet、Flume、Sqoop、Pig、Hive、Crunch、Spark、HBase、ZooKeeper。第Ⅴ部分提供了三个案例,分别来自医疗卫生信息技术服务商塞纳(Cerner)、微软的人工智能项目ADAM(一种大规模分布式深度学习框架)和开源项目Cascading(一个新的针对MapReduce的数据处理API)。 本书是一本权威、全面的Hadoop参考书和工具书,阐述了Hadoop生态圈的*发展和应用,程序员可以从中探
《Doris实时数据仓库理论与实战》系统地介绍了Doris的核心概念、架构原理和各项功能。全书共7章。第1章对Doris做了初步介绍。第2章重点介绍了Doris的数据表设计。第3章聚焦于Doris的数据导入。第4章介绍了Doris的数据导出和数据管理。第5章讨论了Doris中的数据更新和删除操作。第6章将读者带入Doris的进阶使用领域。第7章展示了Doris的生态扩展。通过《Doris实时数据仓库理论与实战》的学习,读者可以全面而深入地了解运用Doris构建高效、可扩展、实时数据仓库系统的方法,从理论到实践,从基础到进阶。 《Doris实时数据仓库理论与实战》适用于Doris开发人员和数据工程师,或有志从事数据仓库开发的技术人员。
本书主要以项目实战为主线,从0到1的项目开发流程,教会读者如何开发全栈项目。它基于最新的Spring Boot3.1以上版本和Vue.js3.0版本的前后端分离项目开发,以及面向用户端的uni-app的小程序开发。本书基础的知识会在项目的开发过程中穿插讲解,不会单独的基础知识讲解,采用实战驱动学习知识的教学方法,并通过详细的代码示例、清晰的图解和源码解析帮助读者快速理解和掌握全栈项目开发的技巧和最佳项目实践。 本书共22章,包括Spring Boot篇、Vue篇和uni-app篇。Spring Boot篇(第1~14章)从环境搭建到项目上线,逐步深入讲解项目开发流程,并使用了众多企业级流行的开发技术,如Redis、Docker、Jenkins、Mybatis-plus等。Vue.js篇(第15~19章)使用Vue 3.0版本,采用开源的Vue.js框架Vue-Vben-Admin作为项目启动模板,帮助快速搭建后台管理系统,节约时间成本等。uni-app篇(第20~22章
本书旨在为包括研究生和工业从业者在内的研究人员提供有关为数据驱动的进化优化而开发的最新方法的全面描述。本书共分12章,第1~4章简要介绍了优化、进化计算和机器学习中精心挑选的重要主题和方法。第5章提供了数据驱动优化的基础知识,包括启发式算法和基于获取函数的代理模型管理。第6章介绍使用多个代理模型进行单目标优化的方法。第7~8章中描述用于求解多目标和多目标优化算法的代表性进化算法以及代理模型辅助数据驱动的进化多目标和多目标优化。第9章详细阐述了高维数据驱动优化的方法。第10章描述迁移学习和迁移优化。第11章讨论离线数据驱动的进化优化,以翼型设计优化等实际优化问题为例、原油蒸馏优化和急救系统优化。最后,第12章强调了深度神经架构搜索作为数据驱动的昂贵优化问题。
本书循序渐进、深入讲解了R语言数据统计分析与应用的核心知识,并通过具体实例的实现过程演练了知识点的用法和流程。全书共16章,分别讲解了R语言基础、R语言数据统计语法基础、数据获取和处理、绘制可视化统计图、描述性统计分析、探索性数据分析、推论统计、回归分析、方差分析、非参数统计分析、主成分分析、聚类分析、生存分析、因子分析、基于机器学习的患者再入院预测分析系统和中概科技指数统计分析与投资系统。全书简洁而不失其技术深度,内容丰富全面,历史资料翔实齐全。同时,本书易于阅读,以极简的文字介绍了复杂的案例,同时涵盖了其他同类图书中很少涉及的历史参考资料,是学习R语言数据统计分析与应用的实用教程。
本书深入探讨了大数据技术的核心概念和实际应用。从大数据的基础架构Hadoop开始,逐步解析了分布式协调服务Zookeeper、数据仓库Hive、面向列的数据库HBase等关键技术。此外,还介绍了数据迁移工具Sqoop、数据采集工具Flume、发布订阅消息系统Kafka等实用工具。本书还深入讲解了数据处理分析引擎Spark、全文搜索引擎Elasticsearch及分布式处理引擎Flink的工作原理和应用实例。最后,通过电商推荐系统实战和Flink实现电商用户行为分析两个案例,展示了大数据技术在实际业务中的应用。 本书附带全书实例源代码、电子版本教程(下载方式见封底),以及可扫码观看的长达13个小时的部分实例操作视频,帮助读者更深入了解大数据技术的具体内容,非常适合对大数据技术感兴趣的读者,尤其是想要深入了解大数据技术原理和应用的开发者和管理者阅读。
这是一本能为数字化转型企业的数据治理提供全面指导的著作。拥有集团官方出品,得到了用友集团董事长王文京、DAMA中国区主席汪广盛等9位企业界和学术界数字化专家的一致好评 它基于国际主流的数据治理框架和用友多年的数据治理经验,从道、法、术、器4个维度全面、深入展开,不仅有数据治理在战略层面的顶层设计,还有数据治理在执行层面的实施方法,既可以作为数据治理的纲领性指南,又可作为数据治理的实操手册。 从数据治理的战略规划到落地实施,本书将各环节的核心内容凝练为“3 个战略机制、8 项关键举措、7 种技术能力、7 个治理工具”: 数据治理之道:3个战略机制 高屋建瓴地介绍了数据治理的数据战略、组织机制和数据文化。这3个机制能够帮助企业形成数据治理的自我驱动、自我进化、可持续发展和长效运营
本书主要作为教育领域从事教育大数据研究工作者的参考用书。本书从教育大数据的重要意义、国内外教育大数据的研究现状以及政策支持出发,对教育大数据的相关概念和内涵做阐述说明,介绍了教育大数据的技术、技术标准、治理与开放、风险管理与法律政策,重点阐述了教育大数据在教育领域的典型应用,包括教育大数据在课堂教育、校园管理、在线教育、开放远程教育、教育培训行业以及学生综合素质评价等方面的应用,*后提出教育大数据的发展趋势和机遇挑战。
《GraphPad Prism图表可视化与统计数据分析:视频教学版 》以GraphPad Prism 10为平台,讲述统计分析软件GraphPad Prism的具体应用方法。在介绍《GraphPad Prism图表可视化与统计数据分析:视频教学版 》内容的过程中,作者结合自己多年的工作经验及学习的通常心理,及时给出总结和相关提示,帮助读者快速掌握所学的知识。《GraphPad Prism图表可视化与统计数据分析:视频教学版 》配套示例源文件、PPT课件、教学视频、课程标准、教学大纲和教案。 《GraphPad Prism图表可视化与统计数据分析:视频教学版 》共分12章,内容包括GraphPad Prism基础知识、工作表和单元格、数据输入和模拟、数据处理、图表数据可视化、图表格式设置与优化、图表图形修饰处理、试验数据分析、回归分析、推断性统计分析、一致性检验和生存分析。 《GraphPad Prism图表可视化与统计数据分析:视频教学版 》既适
《Text data mining》 offers thorough and detailed introduction to the fundamental theories and methods of text data mining, ranging from pre-processing (for both Chinese and English texts), text representation, feature selection, to text classification and text clustering. Also it presents predominant applications of text data mining, for example, topic model, sentiment analysis and opinion mining, topic detection and tracking, information extraction, and text automatic summarization, etc.
《MySQL数据库技术与应用》是为普通高等院校计算机及其相关专业编写的一本MySQL数据库实用教材。全书共分十三个项目,前两个项目介绍数据库基础理论知识和数据库设计原理,后面的内容则是通过理论联系实际的方法讲述如何建立MySQL数据库、管理数据库、表及各种对象,重点讲解MySQL中插入、删除、修改和查询语句的使用和实际应用,书中穿插介绍了PHP连接数据库及PHP中操纵和查询数据的内容。编写时注重实践、兼顾理论,通过讲授和实操两条主线安排课程内容,旨在使学生能通过讲解的实例和实操内容掌握MySQL的数据管理技术、数据库应用开发技术和基本理论常识。
本书针对MySQL中高级用户,详细讲解MySQL高级使用技术。书中详解了每一个知识点以及数据库操作的方法和技巧。本书注重实战操作,帮助读者循序渐进地掌握MySQL中的各项高级技术。本书主要包括MySQL架构介绍、MySQL权限与安全、MySQL备份与还原、MySQL的高级特性、MySQL锁定机制、使用MySQLWorkbench管理数据库、SQL性能优化、MySQL服务器性能优化、MySQL性能监控、MySQLReplication、MySQLCluster实战、企业中MySQL的高可用架构实战。同时,本书还提供了所有示例的源码,读者可以直接查看和调用。本书适合有基础的MySQL数据库学习者,MySQL数据库开发人员和MySQL数据库管理人员,同时也能作为高等院校和培训学校相关专业师生的教学参考用书。