本书是一本系统介绍Clickhouse的指导型工具书,全书总共分为11章: 第1章 介绍ClickHouse的由来、发展历程、核心特点与核心特点。第2~6章 介绍了ClickHouse基础使用部分,包括整体架构、如何安装、数据定义、数据引擎、数据查询和函数的特性和使用方法。第7~9章介绍了ClickHouse高级特性部分,包括数据库管理操作,数据分片、数据副本和高可用的特性和使用方法。第10~11章介绍了如果自己手动实现ClickHouse中间件的思路和示例,同时也介绍了几款可视化工具与ClickHouse集成的方法。
算力、数据、AI已经成为驱动当今社会技术发展的三架马车,而算力也从传统的超级计算向云超算的方向发展。本书旨在探讨当前超级计算与云计算的融合而给算力带来的新的发展,介绍当前在算力领域的一些实践和探索,从理论到工程,帮助读者了解超级计算的关键技术与未来发展,从而更好地应用和发展高性能技术。
Elasticsearch是一款高性能的文档数据库,广泛应用于分布式搜索和分析引擎等相关领域,本书首先介绍了数据建模的通用设计原理,然后针对Elasticsearch 介绍了文档数据库建模的特点和要求,例如和设计模式有关的实现、注意事项,以及实践过程中的注意点等。 本书的两位作者,一位是资深的Elasticsearch 专家,一位是建模领域的大师,联合为读者呈现了这本著作。如果你是一名希望扩展Elasticsearch 建模技能的读者,或者是一名了解Elasticsearch 但需要提高模式设计技能的从业人员,推荐阅读本书。
本书系统讲述数据仓库的基本概念、基本原理以及建立数据仓库的方法和过程。主要内容包括:决策支持系统的发展、数据仓库环境结构、数据仓库设计、数据仓库粒度划分、数据仓库技术、分布式数据仓库、ElS系统和数据仓库的关系,外部和非结构化数据与数据仓库的关系、数据装载问题、数据仓库与Web、ERP与数据仓库以及数据仓库设计的复查要目。 本书是数据仓库之父撰写的关于数据仓库的 权威著作,既可作为相关专业的研究生教材,也是数据仓库的研究、开发和管理人员的指南。
本书将现代统计学的重要思想引入数理统计课程中,强调了数据分析、图形工具和计算机技术,并注重统计的实务和应用.本书内容丰富,几乎涵盖了所有经典和前沿的概率论与数理统计理论和方法,主要包括概率、*变量、联合分布、期望、极限定理、抽样调查、参数估计、假设检验、数据汇总、两样本比较、方差分析、分类数据分析和线性小二乘等. 本书用真实数据分析了实际问题,以此增强读者对理论的理解;作者将自助方法与传统的推论性过程结合起来,增加了蒙特卡罗方法.此外,为了使概念更清晰,书中提供了大量的示例,而且还有丰富的习题,以增强读者的计算能力. 本书适合作为统计学、数学、其他理工科专业以及社会科学和经济学专业高年级本科生和低年级研究生的教材,同时也可供相关领域技术人员参考.
数据作为生产要素已经被提升至国家战略层面,如何激活数据要素、体现数据价值,如何有效利用数据赋能数字化转型,成为当前炙手可热的问题。本书厘清了数据治理、数据管理和数字化转型的关系,介绍了数据治理核心工作中经常出现的问题和优秀实践,明确了数字化转型的核心内容、方法路径和评估机制,通过大型企业数据治理或数字化转型案例为读者提供有价值的参考。本书适合首席执行官、首席信息官、首席数据官等从事企业管理和数据管理工作的人员阅读,有助于提升对数据治理和数字化转型的认识,为在组织中有效开展数据治理和数字化转型工作提供思路和借鉴。
随着物联网、云计算、大数据与人工智能等技术的蓬勃发展,计算服务逐渐从计算密集型向数据密集型(Data Intensive)转变。高性能、高通量的数据服务关键技术成为智慧城市、智能制造、智慧农业等国家重大需求解决方案的核心基础。并行与分布式数据处理的概念启发于上世纪80年代,源自讨论在内存及二级存储极为有限的条件下如何跨越 内存墙 ,完成计算任务的优化技术。而今,互联网与私有网络数据指数级增长、数据服务的事务性需求复杂多变、跨地域数据同步需求动态不统一、如何应对当前及未来大数据服务及其上的人工智能计算对并行与分布式数据服务提出了新的问题与挑战。本书从并行与分布式数据服务的基础理论、事务模型、数据处理语言等基础内容,并进一步讨论分布式数据一致性模型及全观性的数据处理架构方面的先进及实用的研究及系统软件
《Power BI商务智能数据分析》是一本教你用Microsoft Power BI分析处理经营业务数据的教程。《Power BI商务智能数据分析》从职场实战出发,精选作者线下培训课程精华,能够帮助企事业单位各部门数据分析人员,通过图形化工具界面,轻松完成大数据处理与可视化交互分析。 《Power BI商务智能数据分析》共分为5章,帮助你从商业智能、数据可视化分析的*新技术入门;按照数据分析流程,逐步完成数据清洗与预处理、建立数据分析模型、可视化报表设计、在线报表发布等工作。Microsoft Power BI以互联网思维打造产品,桌面端免费,每月迭代更新,本书中的Power BI桌面版与Online版操作界面以2020年更新版本为主。 《Power BI商务智能数据分析》适合企事业单位数据分析人员阅读。
本书围绕数据中心业务如何经营这一主题展开论述,以数据中心产业演变为切入点,围绕“布局-建设-服务”三大核心环节,针对数据中心产业面临的集群化布局、低碳化建设、智能化服务的机遇与挑战,通过变革中的数据中心产业、数据中心产业面临的挑战、数据中心布局之道、数据中心低碳建设之道、数据中心智能服务之道、数据中心产业政策实施之道、新形态数据中心经营之道等内容剖析原因、洞察规律、研讨案例、搭建模型,为相关经营主体给出了专业务实的策略。 本书实用性强,内涵丰富,采用情景对话方式编写,可读性强,具备较高参考价值。 本书可供通信运营商、第三方专业服务商、跨界服务商等各类数据中心运营主体的从业人员阅读,也可供主管数据中心建设与运营的政府部门的工作人员阅读。
本书不是一本关于数据管理的 如何做 的书(如规范数据属性或是创建数据库),而是一本关于数据管理 如何思考 的书。本书将心理学和哲学与数据管理巧妙的融合在一起。将心理学和哲学学科与数据管理结合在一起,以创造有关我们如何感知和管理信息的知识。书中阐述了当今数据库系统通过数据来捕获现实世界的方式及缺陷,作者运用非常清晰的逻辑、仔细地描述了信息系统中所表示的现实世界的各个方面。对系统中所使用的数据模型、语言、语义和现实世界描述下的哲学问题进行了深刻的检视,对这些核心概念、其对信息系统的影响,是坊间遍寻不到的。这本书的价值在于批判性地探索解决现实世界的信息系统建模方法,这是一本令读者愉悦并具有启发性的佳作。适合从事数据建模、大数据、数据管理的人士阅读。
内容简介 这是一本写给互联网消费金融行业从业者的实战指南,从产品创新、业务架构、精细化运营、数字化转型等多个维度对互联网消费金融进行了有针对性的讲解。 作者是互联网消费金融领域的先行者和布道者,从行业兴起一直深耕至今,目前是知名互联网消费金融机构运营和技术负责人,对行业创新和应用架构有深刻理解,经验非常丰富,本书是他们多年从业经验的总结。 第1章简要介绍了互联网消费金融的核心概念、生态、趋势和痛点,旨在让读者对这个行业有一个整体认识; 第2章以构建成功的客户旅程为切入点,讲解了如何以用为为中心来设计互联网消费金融类产品,这是产品创新的关键; 第3~4章首先讲解了互联网消费金融的业务架构方法论,然后具体讲解了银行、消费金融公司、金融科技公司的互联网消费金融的业务架构; 第5~6章详细讲解了互联
在数据科学研究过程中,能快速解决问题是一项不可或缺的能力。但是数据科学面临的复杂性在于,随着大数据采集的数据量越来越大,以及最优解算法越来越复杂,很多算法面临着运行非常耗时,有时甚至在现有的资源情况下不可解的状况。 此时,需要数据科学家发挥工程师思维,使用一些计算量小的近似方法,在节省时间和计算资源的前提下,得到不错的结果,这些方法可以称为启发式方法。本书聚焦 启发式方法 这个主题,分5个部分进行介绍。第1部分概述了各种类型的启发式方法;第2部分侧重于面向数据的启发式方法及其在数据科学问题中的应用;第3部分诠释了面向最优化的启发式方法,以及它们如何解决具有挑战性的最优化问题;第4部分是讲解如何设计和实施新的启发式方法,以解决特定问题的相关内容;第5部分介绍了关于启发式方法的其他主题,
本书首先介绍如何设置基本的数据科学工具箱,然后带你进入数据改写和预处理阶段,这一部分主要是阐明所有与核心数据科学活动相关的数据分析过程,如数据加载、转换、修复以及数据探索和处理等。通过主要的机器学习算法、图形分析技术,以及所有易于表现结果的可视化工具,实现对数据科学的概述。 本书对上一版内容进行了全面拓展和更新,涵盖新版的Jupyter Notebook、NumPy、pandas和Scikit-learn等的新改进。此外,还介绍了深度学习(借助在Theano和Tensorflow平台上运行的Keras库)、漂亮的可视化(使用Seaborn和 ggplot)和Web部署(使用bottle)等新内容。 本书行文过程以数据科学项目为主体,辅以整洁的代码和简化的示例,能帮助你理解与项目相关的潜在原理和实际数据集。
实战大数据——分布式大数据分析处理系统开发与应用,从大数据技术基础概念出发,介绍了大数据分析的流程和大数据分析处理系统的组成,以及大数据集群的搭建,并在此基础上讲解了多种不同技术构成的离线/实时数据分析系统实战项目。全书共10章,包括大数据概述、大数据分析的基本流程与工具、分布式大数据分析处理系统概述、构建大数据集群环境、构建基于LayUI的集群管理系统、基于HBase的大数据离线分析系统、基于Hive+Hadoop+Spark的大数据离线分析系统、基于MySQL+Spark的大数据离线分析系统、基于Redis+Kafka+Spark的大数据实时分析系统、基于Flume+Kafka+Flink的大数据实时分析系统。 实战大数据—— 分布式大数据分析处理系统开发与应用,适合从事大数据系统搭建与运维、大数据分析等岗位的技术人员阅读,也适合高等院校大数据相关专业的学生使用。
暂无内容简介。。。。。。
内容简介:本书共有8章,面向的对象是Excel初学者,从Excel的基本理念开始,用3章的篇幅介绍Excel的基本规则和基础表单的标准化和规范化,这是极其重要的,任何一个Excel小白都不能跨过这一步!即使已经有了所谓Excel基础的人, 还是要从头来重新打基础。然后是Excel常用工具、函数和透视表的基本应用的介绍,以及如何利用这些工具技能来解决实际问题。