这是一本关于 高级/进阶 算法和数据结构的图书,主要介绍了用于Web应用程序、系统编程和数据处理领域的各种算法,旨在让读者了解如何用这些算法应对各种棘手的编码挑战,以及如何将其应用于具体问题,以应对新技术浪潮下的 棘手 问题。 本书对一些广为人知的基本算法进行了扩展,还介绍了用于改善优先队列、有效缓存、对数据进行集群等的技术,以期读者能针对不同编程问题选出更好的解决方案。书中示例大多辅以图解,并以不囿于特定语言的伪代码以及多种语言的代码样本加以闸释。 学完本书,读者可以了解高级算法和数据结构的相关内容,并能运用这些知识让代码具备更优性能,甚至能够独立设计数据结构,应对需要自定义解决方案的情况。 本书可作为高等院校计算机相关专业本科高年级学生以及研究生的学习用书,也可供从事与算法相关工作
本书是备受广大读者推崇的数据结构与算法入门教程,已在GitHub获得超60k的 Star,并多次登顶GitHub Trending。书中系统介绍了数据结构与算法基础、复杂度分析、数组与链表、栈与队列、哈希表、树、堆、图、搜索、排序、分治、回溯、动态规划和贪心算法等核心知识,通过清晰易懂的解释和丰富的代码示例,以及生动形象的全彩插图和在线动画图解,揭示算法工作原理和数据结构底层实现,教授读者如何选择和设计算法来解决不同类型的问题,切实提升编程技能,构建完整的数据结构与算法知识体系。
本书将数学理论与实例相结合,这些实例以*先进的通用机器学习框架为基础,由Python实现,向读者介绍更复杂的算法。全书共25章,包括机器学习模型基础、损失函数和正则化、半监督学习导论、高级半监督分类、基于图的半监督学习、聚类和无监督学习模型、高级聚类和无监督学习模型、面向营销的聚类和无监督学习模型、广义线性模型和回归、时序分析导论、贝叶斯网络和隐马尔可夫模型、*大期望算法、成分分析和降维、赫布学习、集成学习基础、高级提升算法、神经网络建模、神经网络优化、深度卷积网络、循环神经网络、自编码器、生成对抗网络导论、深度置信网络、强化学习导论和高级策略估计算法。
深度学习和传统机器视觉技术相融合,可以大大提高AI 技术的效率和精度。本书分上、下两篇,共19 章内容,详细讲解了机器视觉及深度学习的理论和编程实践。上篇介绍理论算法。包括机器视觉的经典图像处理算法、深度学习的理论基础和目前常用的深度学习框架。下篇介绍编程环境及系统搭建。讲解了机器视觉图像处理算法及深度学习的编程工具 VC 、Python 和 OpenCV;利用 VC 和 Python 工具,搭建图像处理的工程界面;介绍了常用的9 种深度学习框架的获得方法、安装设置、工程创建,以及深度学习工程的编译、训练、评估与部署方法。每一个搭建的工程,都提供一套可下载的源代码程序,方便读者下载学习。本书理论与实践兼顾,可为从事机器视觉技术及人工智能研究和应用的工程技术人员提供帮助,也可供高等院校相关专业师生学习参考。
近百年来,由于大量计算的例子,数论学家增进了他们的直觉性。计算机和精心研制的算法逐渐导致出现了算法数论这一专门的领域。这个年轻的学科和计算机科学、密码学以及数学的其他分支有很强的联系。数学思想往往导致更好的算法,这是此学科的魅力之一;而对算法的广泛研究也促使数学新思想的产生和新问题的探索。本书包括由各领域首屈一指的专家对算法数论各个专题所写的二十篇综述性文章:前两篇文章为引论;随后的八篇文章覆盖了该领域的核心内容:因子分解、素性、光滑数、格、椭圆曲线、代数数论和算术运算的快速算法;后十篇文章就某个专门方面综述一些特殊课题,包括密码学、Arakelov 类群、计算类域论、有限域上的zeta 函数、算术几何与模形式理论。本书可供数学、计算机科学和密码学等相关专业的读者参考。
《Swift常用算法 经典计算机科学问题的Swift实现》 通过探究基本的编码技术和算法,进一步提高读者的Swift编程技能。读者在领略书中关于搜索、聚类、图等领域的示例时,脑海中将会重现一些已经淡忘的重要内容,并将找到 新 问题的经典解决方法。作者David Kopec具有出众的能力,将计算机科学的核心原理与诸如应用、数据、性能甚至通过工作面试等现实问题加以关联。 特色内容: ◆ 宽度优先、深度优先、A*搜索算法 ◆ 约束满足问题 ◆ 使用图算法来解决问题 ◆ 神经网络、遗传算法等 ◆ 全部代码示例采用Swift 4.1编写 《Swift开发秘籍》 在本书中,著名编程图书作者Erica Sadun介绍了有效的策略和即时可用的Swift代码来应对日常开发所面临的挑战。 在Erica Sadun编写的所有编程畅销书中, Swift开发秘籍 将现代的*实践转换为几十个行之有效、