机器学习是计算机科学的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面. 全书共 16 章,大致分为 3 个部分:第 1 部分(第 1~3 章)介绍机器学习的基础知识;第 2 部分(第 4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第 3 部分(第 11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等. 每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索. 本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考.
这是一部从技术原理、行业应用、商业价值、投资创业、发展趋势5个维度讲解AI Agent的著作,具有科普书和商业书的双重属性。 本书首先详细介绍了AI Agent的技术路径及其在11大领域的应用,丰富的应用案例可以帮助读者深度理解AI Agent产品形态与服务方式;然后深入探讨了AI Agent的商业价值与商业生态,并对AI Agent的企业级应用和投资创业做了很多思考与总结,能够带给读者应用与创业方面的启发。本书将技术、应用及商业理念融会贯通,理论性与实用性兼具,是一本适合业内外人士快速了解AI Agent、提升行业认知的综合指南,得到了很多行业人士、专家及创业者的一致好评。 全书共15章,分为四个部分: 第一部分(第1~3章) 技术认知 首先,介绍AI Agent的概念、特征、定义、发展历程、分类方式,以帮助读者全面认知AI Agent;然后,介绍AI Agent核心技术,展示其技
本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络的优化与应用、EM算法及其应用、集成学习的过拟合现象研究、度量学习及其应用。书中包含简答题、计算题和编程题,涵盖不同难度级别,机器学习初学者可以通过这些习题深入了解和巩固教材的关键概念,对机器学习有一定基础的读者也可以通过习题发现对一些知识点不同角度的解读,为后续机器学习的深入研究打下基础
本书分为两大部分:di一部分主要基于Scikit-Learn,介绍机器学习的基础算法;第二部分则使用TensorFlow和Keras,介绍神经网络与深度学习。此外,附录部分的内容也非常丰富,包括课后练习题解答、机器学习项目清单、SVM对偶问题、自动微分和特殊数据结构等。书中内容广博,覆盖了机器学习的各个领域,不仅介绍了传统的机器学习模型,包括支持向量机、决策树、随机森林和集成方法,还提供了使用Scikit-Learn进行机器学习的端到端训练示例。作者尤其对深度神经网络进行了深入的探讨,包括各种神经网络架构、强化学习,以及如何使用TensorFlow/Keras库来构建和训练神经网络。本书兼顾理论与实战,既适合在校学生,又适合有经验的工程师。
内容简介本书是AI时代法律人和法律机构的生存指南,它从业务角度全面总结了法律人如何使用AI提升工作效率,以及律所等机构如何使用AI提升运营效率;它从技术角度详细讲解了如何构建法律行业的垂直大模型、知识库和智能体。它由中国领先的法律科技企业新橙科技(iCourt)官方出品,是iCourt的CEO带领团队核心成员总结的iCourt在AI领域的理论研究成果和实战经验。全书内容分为五个部分:第一部分(第1章) AI带来的影响与应对措施从法律人的视角介绍了AI大模型的基础知识,以及AI在法律领域的应用趋势和场景。从宏观角度深入探讨AI对法律行业带来的积极影响和消极影响。最后部分为法律行业从业者和法律机构应对 AI 带来的变革提供相应策略。第二部分(第2~6章)AI 助力法律人提升工作效率围绕类案检索、案情分析、法律咨询、法律文书写作、合同审查等法
这是一本讲解NPU硬件架构设计与技术实现的著作。作者将自己在CPU、GPU和NPU领域15年的软硬件工作经验融会贯通,将四代NPU架构设计经验融为一体,将端侧和云侧NPU架构合二为一,总结并提炼出本书内容。本书主要讨论神经网络硬件层面,尤其是芯片设计层面的内容,主要包含神经网络的分析、神经网络加速器的设计以及具体实现技术。通过阅读本书,读者可以深入了解主流的神经网络结构,掌握如何从零开始设计一个能用、好用的产品级加速器。 通过阅读本书,你将: 透彻理解与深度学习相关的机器学习算法及其实现 学会主流图像处理领域神经网络的结构 掌握加速器运算子系统和存储子系统的设计 摸清加速器设计中遇到的具体问题及其解决方法 了解NPU架构需要考虑的控制通路和数据通路
这是一本关于Elasticsearch技术实战的教程,全面覆盖了Elastic Stack技术体系知识,旨在帮助读者深入了解Elasticsearch的核心技术和应用场景,同时掌握分布式搜索与分析引擎的设计思想和实现原理。
马文·明斯基认为,无论是人类的思维还是人工智能的思维,都是由原本简单的元素相连而组成,当这些元素组成一个整体时,就成为无限复杂的、我们称为思想和感情的东西。这些思想和感情可以转化为人类的体验。本书章节、段落之间的结构和明斯基的理论相呼应,翻过这一篇篇书页,关于思维的统一理论渐渐成型。本书妙趣横生,是想象空间里的一场历险。
数据驱动的研究正在革新复杂系统的建模、预测和控制。本书面向高年级本科生和研究生,提供了一个综合的视角,展示了如何将新兴的方法,如数据科学、数据挖掘和机器学习技术,应用到工程和物理科学中。
本书在介绍ROS总体框架和理论要点的基础上,讲解ROS的通信机制、常用组件和进阶功能;同时以实践为主,讲解机器视觉、机器听觉、SLAM与导航、机械臂控制、机器学习等多种ROS应用的主要原理和实现方法;并分析基于ROS的机器人系统设计方法和典型实例;后论述ROS2的框架特点和使用方法,剖析ROS的发展方向。
本书通过高度创新的方法——利用现有无线设备和信号处理技术将多径视为虚拟天线,并结合时间反演原理和机器学习相关知识构建了无线AI的统一框架,涵盖了基础的理论、丰富的实验结果,以及针对产品和应用开发的真实案例。涉及的主题包括室内定位与追踪、无线感知与分析、无线功率传输与能源效率、5G和下一代通信系统,以及大量带宽不同、功能各异的异构物联网设备的连接。本书可供无线感知、定位、物联网、机器学习、信号处理和无线通信等领域的毕业生、研究者和专业人员参考阅读。
在人工智能和机器学习的领域内,语言模型正以前所未有的速度推进科技发展的边界。尤其是大型语言模型(LLM)这一细分领域,在理论研究与应用实践之间取得了显著飞越。《LLM大语言模型原理及应用 基于GPT》这本书由三位拥有丰富云计算、AI背景,并且在开发及运用OpenAI等先进AI系统中处于前沿地带的资深专家精心撰写。全书共7章,内容涵盖从基础概念介绍到复杂系统编排、再到具体行业应用开发等多个层面。本书详尽阐述了LLM 的起源、定义及其与传统深度学习方法间关键差异;依次深入主流训练框架探讨如何为LLM提供动力,并透露了优化策略以及高效建立算力基础设施所要考虑的因素。不仅如此,作者们还特别注重将抽象理论同现实企业场景相结合,指出GPT 这类模型是如何融入日常商务活动中,并通过Copilot 提升生产效率;同时展示插件开发案例和敏锐洞
《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
本书弥补了纯数学书籍和机器学习书籍存在的单一性问题,介绍了理解机器学习所需的数学概念,例如线性代数、解析几何、矩阵分解、向量微积分、优化、概率和统计,并使用这些概念推导出了四种核心机器学习方法:线性回归、主成分分析、高斯混合模型和支持向量机。本书每一章都包括一些例子,大部分章还配有习题,以方便读者测试对所学知识的理解程度。本书适合数据科学专业和计算机科学专业的学生,以及算法工程师与机器学习领域相关从业者阅读。
内容简介这是一部从业务和技术双重视角讲解AI大模型如何为供应链金融行业赋能的著作,是国内供应链金融科技领域的上市企业联易融的实践经验总结。本书立足金融科技前沿,基于供应链金融的丰富场景,融合大模型技术的先进理念,创新性地提出供应链金融GPT概念,旨在为读者提供一个全新视角,理解AI大模型在供应链金融领域的应用机制和工作逻辑。本书集理论性、技术性、前瞻性和实用性于一体,读完本书后,读者能了解和掌握以下知识:(1)AIGC与大模型的基础知识,以及面临的挑战(2)大模型行业的发展现状,以及中国的大模型布局(3)大模型的原理、架构、训练与微调等(4)企业落地大模型的方法,如提示工程、RAG、知识库与AI Agent等(5)主流的大模型应用开发工具的原理和使用方法(6)大模型的监管技术与策略(7)大模型的评测体系与框架(8)大
本书主要讨论机器学习、神经形态计算和神经网络的理论及应用,专注于机器学习加速器和硬件开发。本书从传统的微处理架构发展历程入手,介绍在后摩尔定律和后丹纳德微缩定律下,新型架构的发展趋势和影响执行性能的各类衡量指标。然后从应用领域、ASIC和特定领域架构三个角度展示了设计特定的硬件实现所需考虑的诸多因素。接着结合机器学习开发过程及其性能提升方法(如模型压缩、编码、近似、优化等)介绍硬件实现的细节。zui后给出机器学习硬件实现的大量案例,展示机器如何获得思维能力。本书适合有一定机器学习基础并希望了解更多技术发展趋势的读者阅读。
本书从机器学习的角度系统地讨论自然语言处理,提供了对NLP解决方案更深入的数学理解。学生可以利用这些知识来解决NLP任务,并建立更好的NLP模型。
内容简介这既是一本引导读者如何使用ChatGPT低门槛、高效率学习Python数据分析与挖掘方法的著作,又是一本指导读者如何使用ChatGPT精准、高效地进行Python数据分析与挖掘实操的著作。从读者对象的角度看,本书既大大降低了没有编程经验的读者学习Python数据分析的门槛,又为有经验的Python数据分析师提供了大量实用的AI数据分析技巧,帮助他们快速转型为具备AI能力的数据分析师。从核心内容的角度看,本书不仅讲解了如何在数据预处理、数据清洗、数据可视化等基础的数据分析环节使用AI工具,而且还讲解了如何在聚类分析、预测分析等高级的数据建模环节使用AI工具。阅读完本书,你将掌握以下知识:(1)数据分析、数据挖掘以及机器学习算法的基础知识。(2)ChatGPT等AI工具的注册及使用,以及如何使用这些AI工具学习Python。(3)使用ChatGPT辅助各种常见的数
在连贯的统计框架中,本书涵盖了一系列有监督的机器学习方法,包括基础方法(k-NN、决策树、线性和逻辑回归等)和高级方法(深度神经网络、支持向量机、高斯过程、随机森林和提升等),以及常用的无监督方法(生成模型、k-均值聚类、自动编码器、主成分分析和生成对抗网络等)。所有方法都包含详细的解释和伪代码。通过在方法之间建立联系,讨论一般概念(例如损失函数、zuida似然、偏差-方差分解、核和贝叶斯方法),同时介绍常规的实用工具(例如正则化、交叉验证、评估指标和优化方法),本书始终将关注点放在基础知识上。最后两章为解决现实世界中有监督的机器学习问题和现代机器学习的伦理问题提供了实用建议。