Transformer正在颠覆AI领域。市面上有这么平台和Transformer模型,哪些最符合你的需求? 将引领你进入Transformer的世界,将讲述不同模型和平台的优势,指出如何消除模型的缺点和问题。本书将引导你使用Hugging Face从头开始预训练一个RoBERTa模型,包括构建数据集、定义数据整理器以及训练模型等。 《基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理》分步展示如何微调GPT-3等预训练模型。研究机器翻译、语音转文本、文本转语音、问答等NLP任务,并介绍解决NLP难题的技术,甚至帮助你应对假新闻焦虑(详见第13章)。 从书中可了解到,诸如OpenAI的高级平台将Transformer扩展到语言领域、计算机视觉领域,并允许使用DALL-E 2、ChatGPT和GPT-4生成代码。通过本书,你将了解到Transformer的工作原理以及如何实施Transformer来决NLP问题。 主要内容 ? 了解用于解决复杂语言问题的新技术
工业数字化时代已经到来,基于模型的系统工程和设计已经成为工业 智 造的手段。数字化设计在汽车行业的需求体现得尤为明显,模型作为数字化设计的主线索已经贯穿于从产品概念、系统需求、软件架构、软件实现到软件组件测试、软件集成验证、系统集成验证、产品交付的各个环节。本书既从广度上重点介绍了Simulink工具平台在各个工业领域上的广泛应用,又从深度上剖析了Simulink从架构、建模、仿真、代码生成、自动化测试与验证到硬件生态建设这样一条完整的产品建设思路。 本书是面向汽车电子、航空电子、工业控制、智能家电、无人机系统、机器人控制、电力电子等多个工业领域而撰写的专业著作,可供相关行业的公司、研发团队、工程师以及高校师生参考。
ChatGPT 是目前市场上最为优秀的 AI 工具之一,它以强大的信息整合、知识链接、编程和语言理解等能力惊艳了全球,被广泛用于各行各业,以提高生产力。那么如此强大的 AI 工具该怎样使用呢? 《ChatGPT 实操应用大全(全视频 彩色版)》应运而生,这是一本关于 ChatGPT 全场景使用秘籍,为读者呈现 ChatGPT的 150种不同的使用方法和技巧,带读者深度解锁 ChatGPT的功能,释放出无限的创造力。它能够帮助用户轻松解决各种实际问题,极大地提高工作效率和生产力。不论是短视频内容创作、数据分析、日常办公、论文写作、金融投资,还是翻译、写代码等任务,本书都能够满足用户的需求。如果想要更好地利用 ChatGPT 功能,就阅读本书。本书主要涵盖 ChatGPT 的注册与登录、基本功能的使用、提示词用法、150 种应用场景、参数指令与 API 开发以及ChatGPT插件等内容,内容通
本书分为两大部分:di一部分主要基于Scikit-Learn,介绍机器学习的基础算法;第二部分则使用TensorFlow和Keras,介绍神经网络与深度学习。此外,附录部分的内容也非常丰富,包括课后练习题解答、机器学习项目清单、SVM对偶问题、自动微分和特殊数据结构等。书中内容广博,覆盖了机器学习的各个领域,不仅介绍了传统的机器学习模型,包括支持向量机、决策树、随机森林和集成方法,还提供了使用Scikit-Learn进行机器学习的端到端训练示例。作者尤其对深度神经网络进行了深入的探讨,包括各种神经网络架构、强化学习,以及如何使用TensorFlow/Keras库来构建和训练神经网络。本书兼顾理论与实战,既适合在校学生,又适合有经验的工程师。
大模型应用解决方案 基于ChatGPT和GPT-4等Transformer架构的自然语言处理 Transformer正在颠覆AI领域。市面上有这么平台和Transformer模型,哪些 你的需求? 将引领你进入Transformer的世界,将讲述不同模型和平台的优势,指出如何消除模型的缺点和问题。本书将引导你使用Hugging Face从头开始预训练一个RoBERTa模型,包括构建数据集、定义数据整理器以及训练模型等。 《基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理》分步展示如何微调GPT-3等预训练模型。研究机器翻译、语音转文本、文本转语音、问答等NLP任务,并介绍解决NLP难题的技术,甚至帮助你应对假新闻焦虑(详见第13章)。 从书中可了解到,诸如OpenAI的高级平台将Transformer扩展到语言领域、计算机视觉领域,并允许使用DALL-E 2、ChatGPT和GPT-4生成代码。通过本书,你将了解到Transformer的工作原理以及如
《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》在一个通用的概念框架中描述通用于数据挖掘、机器学习和生物信息学等领域的重要思想和概念。这些统计学范畴下的概念是人工智能与机器学习的基础。全书共18 章,主题包括监督学习、回归的线性方法、分类的线性方法、基展开和正则化、核光滑方法、模型评估和选择、模型推断和平均、加性模型、树和相关方法、Boosting 和加性树、神经网络、支持向量机和柔性判断、原型方法和*近邻、非监督学习、随机森林、集成学习、无向图模型和高维问题等。 《统计学习要素:机器学习中的数据挖掘、推断与预测(第2版)》主题全面,是一本经典的统计学习教材,适合本科高年级学生和研究生使用和参考。
数据驱动的研究正在革新复杂系统的建模、预测和控制。本书面向高年级本科生和研究生,提供了一个综合的视角,展示了如何将新兴的方法,如数据科学、数据挖掘和机器学习技术,应用到工程和物理科学中。
当智能工具成为我们日常生活不可或缺的一部分时,我们很容易忘记人类是如何迈入数字时代并一路走来的。然而,在历史上的一段时期内,聪明的人类却在创建由简单的0和1组成的字符串时遇到了众多极大的困难。《数字革命史》正是向这段历史致敬,没有这段历程,就没有我们今日智能手机、社交网络、互联网服务和人工智能的普及。这本书讲述了人类曾面临的最严峻的挑战,并呈现了现代新技术世界的奥秘。该书围绕五个主要章节带领读者畅游数字革命史之路,探究以惊人速度相继出现的数字技术并启发今天人工智能的新挑战。
本书以大学生村官小L的故事为线索,深入浅出地探讨经典机器学习的基础知识、深度学习的基本原理,以及形形色色的生成式模型。通过本书的学习,读者不仅可以了解AI大模型的核心技术,还能深刻理解其在实际场景中的应用与价值,甚至可以自己动手设计和构建适用于特定场景的AI模型。衷心地希望本书能成为读者探索AI世界的钥匙,能引领大家走向更加广阔的未来。
《MediaPipe机器学习跨平台框架实战》以实际项目为线索,带领读者探索MediaPipe在不同场景中的应用,使读者既能了解理论知识,又能通过实践掌握技能。全书共9章,第1章介绍MediaPipe基础;第2章重点探讨MediaPipe的控制流、同步机制以及GPU的使用;第3章介绍MediaPipe中的Facemesh,探讨其在增强现实、AR滤镜和视频会议软件中的应用;第4章将MediaPipe与游戏控制相结合,介绍如何在体感游戏中应用MediaPipe技术;第5章以AR激光剑效果、火箭发射小游戏、空中作图等为例,展示MediaPipe在视觉特效方面的应用;第6章介绍如何使用MediaPipe实现手语识别应用;第7章展示如何通过MediaPipe打造虚拟智能健身教练;第8章通过案例介绍MediaPipe与Unity在游戏与虚拟现实领域整合应用的强大潜力;第9章展望MediaPipe的未来,为读者提供了对这一技术的更深层次的认识和思考。 《MediaPipe机器学习跨
识别关系是机器学习的基础。通过识别和分析数据中的关系,以图为核心的算法(如K-邻近或PageRank)显著提高了机器学习应用的效率。基于图的机器学习技术以全新方式为社交网络、欺诈检测、自然语言处理和推荐系统等领域的机器学习提供了强有力的支持。 《动手学图机器学习》是行业类的权威书籍,旨在倾授如何利用面向图的机器学习算法和工具,充分挖掘结构化和非结构化数据集中的自然关系,读者可以从中吸收图架构和图设计实践的精髓,并学会从容避开常见的陷阱。作者Alessandro Negro通过真实的应用示例,将GraphML(一种图建模语言)概念与实际任务完美联系起来,使读者能够更好地理解图技术在机器学习中的价值,并熟练应用该技术。 ● 大数据平台中的图 ● 推荐、自然语言处理、欺诈检测 ● 图算法 ● 与Neo4j图数据库协作
本书以通俗易懂的风格介绍了机器学习和深度学习技术,只涉及了基本的数学知识。本书由两位机器学习和深度学习领域的专家编写,书中的案例涵盖了银行、保险、电子商务、零售和医疗等多个行业。本书讲述如何在当今的智能设备和应用程序中使用机器学习和深度学习技术。本书提供了对书中涉及的数据集、代码和示例项目的下载。 l 机器学习和深度学习的概念 l 随机森林和提升方法 l Python编程与统计学基础 l 人工神经网络 l 回归与逻辑回归 l TensorFlow与Keras l 决策树 l 深度学习超参数 l 模型选择与交叉验证 l 卷积神经网络(CNN) l 聚类分析 l 循环神经网络(RNN)和长短期记忆网络(LSTM)
本书弥补了纯数学书籍和机器学习书籍存在的单一性问题,介绍了理解机器学习所需的数学概念,例如线性代数、解析几何、矩阵分解、向量微积分、优化、概率和统计,并使用这些概念推导出了四种核心机器学习方法:线性回归、主成分分析、高斯混合模型和支持向量机。本书每一章都包括一些例子,大部分章还配有习题,以方便读者测试对所学知识的理解程度。本书适合数据科学专业和计算机科学专业的学生,以及算法工程师与机器学习领域相关从业者阅读。
工程师需要知道的机器学习和人工智能提供的实例和图示来自Prosise的AI和ML课程,这]课程受到了全球各地许多公司和研究所的青睐和欢迎。作者不涉及让人滑悚然和望而生畏的数学公式,目的只有一个那就 是面向工程师和软件开发人员,帮助他们迅速入门并通过案例迅速运用人工智能和机器学习来解决业务问题。本书讲帮助读者学会什么是机器学习和深度学习以及两者各有哪些用途;理解常用的深度学习算法的原理及其应用;学会标记和未标记数据,监督学习和非监督学习有何差异;通过scikit-learn和神经网络Keras和TensorFlow ,运用Python来进行机器学习建模;训练和评分地柜模型与-进制和多类粉类器模型 ;构建面检测和面识别模型以及 对象检测模型。本书适合硬件工程师与软件开发人员阅读和参考
这是一本关于Elasticsearch技术实战的教程,全面覆盖了Elastic Stack技术体系知识,旨在帮助读者深入了解Elasticsearch的核心技术和应用场景,同时掌握分布式搜索与分析引擎的设计思想和实现原理。
本书主要介绍和探讨计算机视觉的一系列核心主题,包括相机成像,图像处理、分析和感知,三维重建等。首先介绍了相机模型、成像过程以及图像的颜色模型、照射模型、渲染模型等;然后系统性地介绍了图像滤波、特征提取、图像和视频感知与理解等多种任务,不仅详细讲解了各任务中的经典方法,还全面地介绍了前沿的基于深度学习的方法;最后介绍了三维重建中涉及的几何原理、重建步骤以及基于深度学习的新方法。 本书针对每一个核心问题单独成章,并着重讲解基本概念。通过大量的彩图,帮助读者理解问题。适合作为本科及研究生的计算机视觉和数字图像处理课程的教材,并且可以作为深度学习课程的参考书。同时,也可供对计算机视觉感兴趣的相关专业人士参考。
本书通过高度创新的方法——利用现有无线设备和信号处理技术将多径视为虚拟天线,并结合时间反演原理和机器学习相关知识构建了无线AI的统一框架,涵盖了基础的理论、丰富的实验结果,以及针对产品和应用开发的真实案例。涉及的主题包括室内定位与追踪、无线感知与分析、无线功率传输与能源效率、5G和下一代通信系统,以及大量带宽不同、功能各异的异构物联网设备的连接。本书可供无线感知、定位、物联网、机器学习、信号处理和无线通信等领域的毕业生、研究者和专业人员参考阅读。
《细说机器学习:从理论到实践》从数学知识入手,详尽细致地阐述机器学习各方面的理论知识、常用算法与流行框架,并以大量代码示例进行实践。本书内容分为三篇:篇为基础知识,包括机器学习概述、开发环境和常用模块、特征工程、模型评估、降维方法等内容。本篇详细而友好地介绍机器学习的核心概念与原理,并结合大量示例帮助读者轻松入门。第二篇为算法应用,涵盖机器学习重要与高频使用的模型,包括K-Means聚类、K近邻、回归、决策树、朴素贝叶斯、支持向量机、神经网络等内容。本篇不仅详细讲解各个算法的原理,还提供大量注释详尽的代码示例,使这些算法变得直观易懂。第三篇为拓展应用,包括集成学习、深度学习框架TensorFlow与PyTorch入门、卷积网络、激活函数以及模型微调与项目实战。本篇内容更加前沿与高级,带领读者跨过机器学习的
一本将 AI 绘画讲透的探秘指南,通过丰富的实践案例操作,通俗易懂地讲述 AI 绘画的生成步骤,生动展现了 AI 绘画的魔法魅力。从历史到未来,跨越百年时空;从理论到实践,讲述案例操作;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。AI 绘画的诞生,引发了奇点降临,点亮了 AGI(通用人工智能),并涉及 Prompt、风格、技术细节、多模态交互、AIGC 等一系列详细讲解。让您轻松掌握生图技巧,创造出独特的艺术作品,书写属于自己的艺术时代。
《Python机器学习项目实战》引领大家在构建实际项目的过程中,掌握关键的机器学习概念!使用机器学习,我们可完成客户行为分析、价格趋势预测、风险评估等任务。要想掌握机器学习,需要有优质的范例、清晰的讲解和大量的练习。本书完全满足这三点! 本书展示了现实、实用的机器学习场景,并全面、清晰地介绍了机器学习的关键概念。在学习本书的过程中,读者将会完成一些引人入胜的项目,比如使用线性回归预测汽车价格,部署客户流失预测服务等。读者将**算法,学习在无服务器系统上部署机器学习应用,以及使用Kubernetes和Kubeflow服务模型等重要技术。大家埋头苦学,亲自动手,享受掌握机器学习技能的乐趣! 主要内容 ●收集和清理训练模型的数据 ●使用流行的Python工具,包括NumPy、Scikit-Learn和TensorFlow ●将机器学习模型部署到生产环境中 阅读门槛 读者
本书是作者多年在数据智能领域中利用机器学习实战经验的理解、归纳和总结。出于 回归事物本质,规律性、系统性地思考问题 理论为实践服务并且反过来充实理论,为更多人服务 的想法和初心,本书系统地阐述了机器学习理论和工程方法论,并结合实际商业场景落地。 全书分为3部分。第1部分是机器学习的数学理论理解,这部分不是对于机器学习数学理论的严谨推导和证明,更多是对于理论背后的 到底是什么,为什么要这样做 的通俗理解。尽可能通过对应到日常生活中的现象来进行讲述。第2部分是机器学习模型、方法及本质,这一部分针对机器学习的方法论及具体的处理过程进行阐述。涉及数据准备、异常值的检测和处理、特征的处理、典型模型的介绍、代价函数、激活函数及模型性能评价等,是本书的核心内容。我们学习知识的主要目的是解决问题,特
本书融合了统计机器学习和数字信号处理方面的知识,详细描述了相关的数学基础和算法,以扎实的、逐步推进的方式引入并讲解概念,以便在实际的软件应用中实现这些想法和算法。对于我们面临的实际问题,书中提供了技术背景,解释了为什么某些方法(而不是其他方法)能够成为zui佳实践;而对于新的问题,书中则提供了框架,教会你如何进行思考和寻求解决之道。 本书适合有信号处理背景,并且有意深入学习和应用机器学习的读者阅读。