这是一本既适合个人,又适合企业的DeepSeek保姆级教程,它能指导我们每个人零基础轻松掌握DeepSeek的高效使用方法,成为使用DeepSeek的高手,走在时代的前列。 作者有多年的创业经验,是AI应用领域的资深专家,是多家500强企业的AI实施顾问,为数百家企业提供了AI应用方面的培训和咨询,本书内容是基于这些经验的总结。本书得到了北青传媒总裁、阿里云副总裁、快手副总裁等多位专家高度评价。 从DeepSeek使用方法到提示词技巧,从DeepSeek在办公、学习、生活等领域的应用,到各个行业的DeepSeek解决方案,本书结合7余个具体的场景,讲解了大量的实用技巧和解决方案。 掌握本书内容,你将收获一下知识: (1)DeepSeek的详细功能和使用方法; (2)DeepSeek的提示词写法和技巧; (3)DeepSeek在邮件、会议纪要、PPT、Excel数据处理、合同检查、翻译、行程规划等8个
AI狂奔的时代,当同事还在为PPT排版熬夜、为数据报表抓狂时,懂DeepSeek的人早已关灯下班 这不是魔法,而是工具碾压的硬核差距! 本书聚焦于DeepSeek的使用方法和技巧,直击30多个高频工作场景,通过100余个开箱即用的提示词模板,助你实现职场的弯道超车。从3分钟速出会议纪要、1键生成爆款思维导图,到悬疑剧本创作、短视频分镜设计,再到法律文书润色、学术数据可视化。无论是PPT排版 效率革命 、海报文案 灵感爆发 ,还是商业计划 专业攻坚 ,都可以用DeepSeek的 理工科大脑 与 深度思考 功能精准破局。 翻开本书,让DeepSeek替你完成80%重复劳动,用AI替你 伪勤奋 斩获升职加薪,把 加班 变成传说,在AI浪潮中率先抢占职业高地!
机器学习是计算机科学的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面. 全书共 16 章,大致分为 3 个部分:第 1 部分(第 1~3 章)介绍机器学习的基础知识;第 2 部分(第 4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第 3 部分(第 11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等. 每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索. 本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考.
本书是人工智能工具DeepSeek的应用操作指南,手把手教用户从零起步,快速掌握DeepSeek的使用方法,从新手小白进阶到AI使用高手。全书涵盖了DeepSeek的基础理论、核心功能与多场景应用,从下载注册教起,重点讲解提示词的编写技巧,通过具体生动的场景化案例演示,聚焦DeepSeek在日常生活、家庭教育、职场工作、自媒体创作和金融投资等领域的实际应用,为读者提供各场景常用提示词和指令模版。本书力求为读者提供一整套系统化、操作性强的使用指南,既适合初学者快速入门,也为专业用户提供深度指导。
这是一部从技术原理、行业应用、商业价值、投资创业、发展趋势5个维度讲解AI Agent的著作,具有科普书和商业书的双重属性。 本书首先详细介绍了AI Agent的技术路径及其在11大领域的应用,丰富的应用案例可以帮助读者深度理解AI Agent产品形态与服务方式;然后深入探讨了AI Agent的商业价值与商业生态,并对AI Agent的企业级应用和投资创业做了很多思考与总结,能够带给读者应用与创业方面的启发。本书将技术、应用及商业理念融会贯通,理论性与实用性兼具,是一本适合业内外人士快速了解AI Agent、提升行业认知的综合指南,得到了很多行业人士、专家及创业者的一致好评。 全书共15章,分为四个部分: 第一部分(第1~3章) 技术认知 首先,介绍AI Agent的概念、特征、定义、发展历程、分类方式,以帮助读者全面认知AI Agent;然后,介绍AI Agent核心技术,展示其技
内容简介 这是一部对人工智能充满敬畏之心的匠心之作,《深入理解Java虚拟机》作者耗时一年完成,它将带你从奠基人物、历史事件、学术理论、研究成果、技术应用等5个维度全面读懂人工智能。 本书以时间为主线,用专业的知识、通俗的语言、巧妙的内容组织方式,详细讲解了人工智能这个学科的全貌、能解决什么问题、面临怎样的困难、尝试过哪些努力、取得过多少成绩、未来将向何方发展,尽可能消除人工智能的神秘感,把阳春白雪的人工智能从科学的殿堂推向公众面前。 全书共8章,逻辑上分为4个部分: 部分 人工智能的起源(第1~2章) 阐述了在人工智能学科创立之前,图灵、香农等先驱们对智能的探索和思考。首先以 人工智能之父 图灵的生平事迹为主线,介绍了图灵机、图灵测试,以及图灵对智能的思考、理解和定义;然后以达特茅斯会议为主线,
本书是教授如何使用AI技术进行公文写作的实用指南。全书分为四章。第一章介绍了AI指令提问的原理和技巧,讲述AI时代提问的特点,以及如何向AI提出优质指令。第二章总结了多种实战方法与技巧,通过应用场景与示范案例,教读者如何针对具体场景向AI提问。第三章聚焦公文写作,涵盖常用AI写作工具和使用技巧介绍,以及如何通过向AI工具提问来指导各类具体公文的写作。第四章深入探讨公文写作的进阶技巧,介绍如何通过AI工具生成公文经典表述和结构化句式,助力读者高效提升公文写作水平。本书旨在通过AI赋能公文写作,提升职场公文写作的效率与质量,是企事业单位实用工具书。
本书基于学术写作的核心在于结构化的思维这一理念,全方位地介绍了如何应用 AI 辅助学术写作。AI 辅助学术写作的流程主要包括选题的确定、前言和文献综述的撰写、理论框架和研究方法的设计、研究框架与正文的组织、结论的构建、初稿的润色、标题摘要的撰写与投稿等方面。 本书力求为读者提供多样化的解决方案。这些解决方案依据不同的写作目标和策略制订,从而让读者可以根据具体需求选择。此外,本书还引导读者探索各种 AI 工具,应用好这些 AI工具有助于解决具体问题,如数据查询、参考文献管理、语言润饰等,极大地节省了学术写作的时间和精力。 无论是学生、教师、研究者,还是对学术写作有浓厚兴趣的读者,本书都能够帮助其更 好地理解人工智能在学术写作中的应用,在逻辑清晰、条理分明的框架内进行有效的学术写作,提高写作技巧,并
这是一本讲解NPU硬件架构设计与技术实现的著作。作者将自己在CPU、GPU和NPU领域15年的软硬件工作经验融会贯通,将四代NPU架构设计经验融为一体,将端侧和云侧NPU架构合二为一,总结并提炼出本书内容。本书主要讨论神经网络硬件层面,尤其是芯片设计层面的内容,主要包含神经网络的分析、神经网络加速器的设计以及具体实现技术。通过阅读本书,读者可以深入了解主流的神经网络结构,掌握如何从零开始设计一个能用、好用的产品级加速器。 通过阅读本书,你将: 透彻理解与深度学习相关的机器学习算法及其实现 学会主流图像处理领域神经网络的结构 掌握加速器运算子系统和存储子系统的设计 摸清加速器设计中遇到的具体问题及其解决方法 了解NPU架构需要考虑的控制通路和数据通路
这是一本关于Elasticsearch技术实战的教程,全面覆盖了Elastic Stack技术体系知识,旨在帮助读者深入了解Elasticsearch的核心技术和应用场景,同时掌握分布式搜索与分析引擎的设计思想和实现原理。
马文·明斯基认为,无论是人类的思维还是人工智能的思维,都是由原本简单的元素相连而组成,当这些元素组成一个整体时,就成为无限复杂的、我们称为思想和感情的东西。这些思想和感情可以转化为人类的体验。本书章节、段落之间的结构和明斯基的理论相呼应,翻过这一篇篇书页,关于思维的统一理论渐渐成型。本书妙趣横生,是想象空间里的一场历险。
数字技术的飞速发展正在以前所未见的程度塑造和撼动支撑人类社会的每一根支柱,经济发展、社会关系、政治结构、流行文化,无不如此。机器 无论是狭义上的硬件装置和设备,还是广义上的软件、算法和人工智能 已经渗透到了人类社会的每一个角落,正在影响着我们每一个人。 今天,人与机器的关系不仅愈加紧密,而且机器的能力在很多领域都正在逼近甚至已经超越人。这使一系列问题亟须被认真审视:人与机器之间的关系是近乎单向的创造与被创造、主宰与被主宰吗?人类是否能始终将机器置于自己的掌控之下?失控的机器会不会如马斯克、泰格马克等人预言的那样,将对人类形成存在性威胁,甚至将人类推向灭亡? 理查德 道金斯曾有一句名言: 鸡是一枚鸡蛋制造另一枚鸡蛋的工具。 人与机器之间的关系是否也会如此微妙?在《协同进化》中,借鉴达
本书在介绍ROS总体框架和理论要点的基础上,讲解ROS的通信机制、常用组件和进阶功能;同时以实践为主,讲解机器视觉、机器听觉、SLAM与导航、机械臂控制、机器学习等多种ROS应用的主要原理和实现方法;并分析基于ROS的机器人系统设计方法和典型实例;后论述ROS2的框架特点和使用方法,剖析ROS的发展方向。
《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
本书全面介绍贝叶斯推理与机器学习,涉及基本概念、理论推导和直观解释,涵盖各种实用的机器学习算法,包括朴素贝叶斯、高斯模型、马尔可夫模型、线性动态系统等。本书在介绍方法的同时,强调概率层面的理论支持,可帮助读者加强对机器学习本质的认识,尤其适合想要学习机器学习中的概率方法的读者。本书首先介绍概率论和图的基础概念,然后以图模型为切入点,用一种统一的框架讲解从基本推断到高阶算法的知识。本书不仅配有BRML工具箱,而且提供大量MATLAB代码实例,将概率模型与编程实践相结合,从而帮助读者更好地理解模型方法。
本书深入介绍了人工智能六十余年发展里程中出现的重要历史事件、理论学说和所取得的激动人心的成果;也从科普的角度,尽可能以不依赖数学等专业知识的方式去介绍这些成果背后的理论与算法。读者可以通过本书对人工智能学科发展里程的解析体会到人工智能的创造者和推动者们所希望的智能理论和产品是如何工作的。无论是与人工智能产业相关的研发人员,还是这个领域的专业研究人员,或是信息科学和计算机科学的爱好者们,都能从本书中得到启发。