本书以智能产品服务生态系统为研究对象,以智能产品服务生态系统需求分析、系统解析、系统设计、系统交付为关键点,探讨了智能产品服务生态系统理论体系、技术方法与相关解决方案实现过程中长期面临的若干关键问题,并从理论和实操层面提出了解决方案,为制造型企业向服务化、网络化、智能化、生态化转型提供了良好的理论指导与借鉴。 本书主要内容来源于实际工业需求,既可以作为企业和政府管理人员的培训教材、本科院校管理专业师生的参考教材,也可以作为从事生产性服务业相关工作人员的参考用书。
智能终端陶瓷是泛指应用于智能终端产品方面的各种精密陶瓷材料,目前应用多的领域就是智能手机和智能穿戴设备;包括手机陶瓷背板、陶瓷中框、指纹识别陶瓷薄片以及手表上的陶瓷表壳、陶瓷表链、陶瓷后盖;智能手环和项链的外观陶瓷件。本书共分8章,详细介绍了智能终端陶瓷的发展与应用、粉体原料的制备、成型工艺、烧结技术、精密加工方法、材料性能分析检测技术、智能终端陶瓷结构件的外观检测与评价方法。是国内该领域部书。不仅适合高等院校陶瓷材料专业的教师、研究生、大学生,也非诚适合国内上千家陶瓷企业中的技术人员和企业高管参考阅读。
从零基础开始,系统阐述卷积神经网络理论基础及其实践应用,可以帮助初学者快速学习和构建深度学习。第1章简要介绍了图像表示和一些计算机视觉模型;第2章介绍了回归、机器学习和优化的概念;第3章介绍了Rosenblatt感知器和感知器学习算法、logistic神经元及其激活函数,以及两类和多类问题的单神经元模型等;第4章介绍了卷积池化层和CNN;第5章通过介绍CNN的一些当前新颖实用的用法,进一步拓展和丰富了深度神经网络的结构。
从零基础开始,系统阐述卷积神经网络理论基础及其实践应用,可以帮助初学者快速学习和构建深度学习。第1章简要介绍了图像表示和一些计算机视觉模型;第2章介绍了回归、机器学习和优化的概念;第3章介绍了Rosenblatt感知器和感知器学习算法、logistic神经元及其激活函数,以及两类和多类问题的单神经元模型等;第4章介绍了卷积池化层和CNN;第5章通过介绍CNN的一些当前新颖实用的用法,进一步拓展和丰富了深度神经网络的结构。
从零基础开始,系统阐述卷积神经网络理论基础及其实践应用,可以帮助初学者快速学习和构建深度学习。第1章简要介绍了图像表示和一些计算机视觉模型;第2章介绍了回归、机器学习和优化的概念;第3章介绍了Rosenblatt感知器和感知器学习算法、logistic神经元及其激活函数,以及两类和多类问题的单神经元模型等;第4章介绍了卷积池化层和CNN;第5章通过介绍CNN的一些当前新颖实用的用法,进一步拓展和丰富了深度神经网络的结构。
针对混流装配线生产计划的智能优化需求,在概要阐述混流装配线及其生产计划内容的基础上,归纳混流装配线中的多种生产计划方式,介绍如何利用建模、分析和决策等一系列理论方法实现生产计划的智能优化方法体系,提升装配制造企业对多变客户需求的适应能力,为提高企业制造水平提供有益参考。全书分为10章,章介绍混流装配线中的生产计划体系;第2章总结混流装配线生产计划的现有优化方法;第3章提出混流装配线生产计划智能优化体系;第5至7章分别介绍智能优化方法体系中的建模、分析与决策等问题,以及适合问题特点的相关方法;第7至9章分别介绍自进化、自组织与自重构三种生产计划方式的具体实现方法;0章介绍面向柴油发动机企业的混流装配线生产计划智能优化原型系统。本书撰写基于理论与实践相结合的原则,注重前沿性技术在生产计划智
工业机器人作为一种高科技集成装备,对专业人才有着多层次的需求。本书根据机器人行业发展趋势,从生产实际出发,详细讲解了工业机器人装调与维修基础,KUKA工业机器人的运输与安装、KUKA工业机器人
2023年度国家科学技术学术著作出版基金资助著作 由“中国人工智能 2.0 发展战略研究”重大咨询研究项目成果形成 覆盖无人机、无人船、空间机器人、智能工厂等11类前沿研究热点 多位院士组成编委顾问 本书由“中国人工智能 2.0 发展战略研究”重大咨询研究项目的成果形成。项目由清华大学的吴澄院士担任组长,浙江大学的孙优贤院士和中国科学院沈阳自动化研究所的王天然院士担任副组长。课题组还包括封锡盛、杨学军、钟志华、金东寒、陈杰、戴琼海、王耀南等院士以及其他 20 余位专家。本书全面阐述了智能无人系统的基础理论、关键应用、示范应用等内容,以期帮助读者对智能无人系统的现状和未来发展趋势有较为全面的了解。
本书主要依托国家自然科学基金 共融机器人基础理论与关键技术研究 重大研究计划:面向室外复杂光照与气象条件的共融机器人多模感知系统(项目编号:91648118)的研究成果,结合作者多年的科研及工程实践经验,针对复杂的光照环境与气象条件明显降低机器人视觉鲁棒性的问题,主要从大气物理与光学成像的新角度出发去详细系统地论述复杂光照(如阴影,反光)与恶劣天气(如雨雪雾)环境下机器人视觉系统的环境感知、建模、及图像预处理技术。主要内容涉及光照建模与光谱计算、阴影、反光的建模、检测与去除、本征图像获取与光照分解、雨雪雾的建模与去除、水下散射的建模与去除,并给出了一些机器人应用实例和工作展望。这些技术将图像与环境建立了关联,对于提高机器人的自主环境感知能力具有一定的意义,使其具有全天候作业能力。