本书这本经久不衰的畅销书出自一位著名数学家G 波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕 探索法 这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何 推理 性问题 从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
从数学的角度来看,世界是由微分和积分构成的。因此,学习微积分就是我们主动了解我们生活的世界的一种方式。微积分在数学中占据着重要的地位,是一个充满数学魅力和乐趣的领域。 然而,微积分的理论性非常强,学习难度大,是最容易挫伤学生学习数学积极性的部分之一。为了最大限度地发挥学生的主观能动性,在最短的时间内抓住并阐明本质,本书以师生对话的方式,配以简单的图片,用浅显易懂的文字说明了微积分的基本原理。 本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓 微分 是指什么?、所谓 积分 是指什么?。 本书通过日常生活中的常见事例说明了微积分的基本原理、公式推导过程及实际应用意义。本书讲解循序渐进,生动亲切,没有烦琐复杂的计算过程,是一本写给不擅长数学的成年人的学习微积
本书这本经久不衰的畅销书出自一位著名数学家G 波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕 探索法 这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何 推理 性问题 从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
《费马大定理:一个困惑了世间智者358年的谜》是关于一个困惑了世间智者358年的谜题的故事。书中既有振奋人心的故事讲述方式,也有引人入胜的科学发现的历史。西蒙 辛格讲述了怀尔斯经过数年秘密辛苦的工作,终于解决了挑战性的数学问题的艰辛旅程。
《有机化学反应机理解析》全书共分为十三章,主要内容包括:有机化合物的结构概述(*章),烷烃(第二章),烯烃(第三章),炔烃、多烯烃(第四章),单环芳烃(第五章),卤代烃(第六章),醇、酚、醚(第七章),醛、酮(第八章),羧酸及衍生物(第九章),含氮化合物(第十章),缩合反应(第十一章),重排反应(第十二章),在系统讲述各类有机反应机理之后,生动形象地对有机化学反应机理进行归一(第十三章),揭示有机化学反应机理的真谛。《有机化学反应机理解析》可作为高中生奥林匹克化学竞赛的参考指导书,也可供高等院校本科生学习有机化学时参考使用,还可作为中学化学教师的培训进修教材。
本书系《中国古代天文知识》丛书之一。中国是世界上产生天文学早的国家之一,也是早有历法的国家之一。在早期新石器时代的母系氏族社会时期,人们已经能够利用星体的位置辨别方向,判断时间,识别季节,因而积累了丰富的天文知识。全书用优美生动的文字、简明通俗的语言、图文并茂的形式,把中国文化中的天文历法知识知识简明扼要地传达给读者,以翔实客观的资料说明了古代天文历法是中华传统文化核心,它的影响一直延续到现代,可谓源远流长,在世界上是独一无二的。
本书系《中国古代天文知识丛书》之一。中国古代天文学家将星空划为三垣二十八宿共三十一个天区,对每一个天区的星座、星名及其功能都做了安排,但对今人而言,这些星座、星名显得佶屈聱牙,它们的功能更是难以理解。本书作者积数十年研究,以齐全的资料、缜密的思考,以十二月昏中星为线索,对全天肉眼能见的主要星座的位置、大小、形状及其功能做了系统介绍。本书是学界揭示中国星座文化内涵的部著作,含有独到的见解和深厚的学术底蕴,书中还结合星名引用了近百个神话故事,佐以几十幅插图,对中国古代星空、星名的含义和来历做了详细的分析,内容丰富,图文并茂,生动有趣,是一部帮助读者认识中国古代星空的很好的入门书,也能给天文学史研究者、历史研究者提供新的视角。
时间,我们存在的基本维度,令艺术家、哲学家和科学家为之陶醉。如今,普里戈金在这本书中向广大读者呈现的,是他与自然之经典描述的彻底决裂。他通过考察西方的时间观,引导我们经历一种奇妙的智力探险 从古希腊出发,经过牛顿轨道和确定性混沌,到达量子理论与 免费午餐 宇宙学统一表述的高度。这本分水岭式的著作表明,一种全新的科学与文化之自然法则诞生了。
文章从数字与数字类型讲起,介绍数字、数学运用的历史、趣味故事,数学在国际象棋、文学电影、艺术等方面的应用等,用生动活泼的语言向读者介绍生活中数学的运用,激发读者学习数学的兴趣,鼓励大家继续探索生活中的数学。
本书包含国际TRIZ协会一级认证所需要的所有内容,共12章,内容包括:绪论、经典TRIZ和现代TRIZ的对比、功能分析、因果链分析、剪裁、特性传递、功能导向搜索、发明原理、技术矛盾和矛盾矩阵、物理矛盾的解决,物-场模型与标准解系统以及工程系统进化趋势。本书通俗易懂、案例丰富,分析步骤清晰,可帮助初学者正确理解现代TRIZ的基本概念和解决发明问题的一些思考方法与工具,是一本实用的基于TRIZ理论的创新方法入门书。
为什么铁路信号系统工作正常时,列车仍然会发生撞车事故?为什么所有操作人员都警觉地坚守着工作岗位,核反应堆依然会发生灾难性的熔化事故?为什么我们制订得甚好的那么多专业和个人计划,会如此频繁地出岔子? 迪特里希 德尔纳,德国*科学奖获得者,在此考虑为什么 假定具备所有的智能、经验和信息条件 我们却仍然会犯错误,有时甚至引起灾难性的后果。令人惊讶的是,他发现问题的答案不在于疏忽或粗心,而缘于他所谓的 失败的逻辑 :我们思维模式中的某些倾向 诸如一次只做一件事,因果关系,还有线性思维 它们适合于过去的简单世界,对于我们现在所生活的复杂世界却有着灾难性影响。当今世界,一切事物都是相互关联的。我们不能一次只做一件事情,因为每件事都有多重结果;我们不能用孤立的因果模式考虑问题,因为所有的情况都
《狭义与广义相对论浅说》是物理学科中的重要经典著作之一。爱因斯坦以生动的笔调和浅显的事例说明相对论的基本原理。全书分三个部分,一篇为狭义相对论;第二篇为广义相对论;第三篇为关于整个宇宙的一些考虑。是科学大师写给普通读者的。阅读该书有助于提高读者的科学素养。
1915年11月,阿尔伯特 爱因斯坦的广义相对论*终定形了,在这以后他撰写了这本《相对论:狭义与广义理论》。这本书是为普通读者写的,在论述狭义和广义相对论的所有著作中一直是表述得*为清晰的读本之一。在爱因斯坦的这本名著的这一版本中,除了包含他的原著的一个权威英文译本这一特色以外,还编入了哈诺克?古特弗洛因德和于尔根?雷恩撰写的14节评述。这些评述剖析了爱因斯坦思想的演变过程,并且把他的理念放到一个现代的背景中进行讨论。本书对有史以来*伟大的科学天才之一提供了无价的洞察,同时还对过去各版本中的引言进行了独一无二的全面研讨,精选收入了一些早期版本的封面、沃尔特?拉特诺写给爱因斯坦的一封讨论此书内容的信,以及从爱因斯坦的原稿中选出的一些发人深省的手稿。 诚如爱因斯坦在前言中所述,这本书是写给不熟悉理
在他十四岁时,伊恩 斯图尔特开始收集各种他感到有趣但又没有在学校教授的数学,因为他知道,在学校里学的数学并不是数学的全部。他发现,在学校里没有学到的数学其实十分有趣 事实上,其中很多会趣味十足,特别是当不需要担心通过考试或者正确求和时。 本书便是斯图尔特教授五十多年收藏的精选,是有趣的数学游戏、谜题、故事和八卦的大杂烩。大部分内容独立成篇,你可以从几乎任意一处着手阅读。除去可以了解各种有趣的数学知识和八卦,你还可以亲自参与到数学当中,亲自制作数学游戏,试着解决数学谜题。作为参考,本书**后给出了那些有已知答案的问题的解答,以及一些供进一步探索的补充说明。 本书适合各种程度的数学爱好者阅读,可帮助培养数学学习兴趣以及破除数学畏惧心理。修订版对2010年版的译文进行了全面整理提升。斯图尔
在中国古代科学技术的发展中,算学发展一直伴随着科技的发展,并且在解决技术与工程发展中的问题发挥出色。本书以图文并茂的形式为少年朋友揭开中国古代数学的神秘面纱。在这里,您将了解从 记数 到 算术 的发展过程,了解被称为 中国数制 的十进位值制记数法,了解古人计算面积和体积所使用的方法,了解《九章算术》《孙子算经》等重要典籍,了解神秘的 河图 与 洛书 、华容道、鲁班锁等经久不衰的古代益智游戏,领略中国古代数学的魅力。
动物有千奇百怪的形态,但为什么从没出现过长着轮子的动物?无性生殖 省时省力 ,但为何代价更高昂的有性生殖才是主流?雄性动物往往有着独特的第二性征,但它们却容易因此而丧命,那这些华丽外表存在的意义是什么?繁殖对种群的延续至关重要,那为何许多动物会提前终止繁殖,甚至主动走上绝路? 以上这些看似奇怪甚至荒谬的现象都是生物界中存在的悖论。从表面上看,这些行为或性状有违逻辑,与个体的初衷背道而驰,但自然选择不仅没有淘汰,甚至还促进了它们的发展。其中的原因何在? 作为生物界的一分子,人的身上也有种种悖论。为什么本该服务于人的细胞会反过来攻击我们,引发癌症?摄入过多的糖会导致严重的健康问题,但人类为什么嗜糖如命?还有双胎、同性恋倾向、左利手等我们熟悉而又难以解释的生物学现象,它们的出现只是概
摆在我们面前的这本由安托万-洛朗 拉瓦锡编写的《科学素养文库 科学元典丛书:化学基础论》全名是《以一种新的系统秩序容纳了一切现代发现的化学基础论》。该书已被人们将它与牛顿的《自然哲学之数学原理》和达尔文的《物种起源》一起列为世界自然科学的 三大名著 。它的出版是化学史上划时代的事件。氧化理论的建立造成了一场全面的 化学革命 ,《化学基础论》正是这场革命的结晶,是拉瓦锡自己对他的发现以及他根据现代实验所创立的新理论思想的阐明。
全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
本书由李兰娟主审并作序,国内多名微生态领域的知名专家,总结自己多年的科研、医疗实践经验,倾力撰写而成。全书以通俗易懂、生动的语言,问答的形式,选取读者日常需要了解、期待了解以及还存在认识误区的微生态学、益生菌应用知识进行简明、清晰的介绍。通过阅读,读者对什么是人体的微生态系统,人体有哪些微生态系统,人体各部位微生态失衡会有怎样的表现,应该怎么维护身体各微生态系统的平衡将有初步的、较为清晰的认识。图书内容贴近普通读者的现实生活,回答读者在日常生活中面临的与身体微生态状态及微生态健康相关的问题,将为读者日常生活中面临相关问题提供指南和知识参考。
笛卡尔(1596-1690)创立的解析几何的诞生则被称为数学史上的伟大转折。1637年笛卡尔发表了他的名著《方法论》,《几何》是当时该书的三个附录之一。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。笛卡尔的《几何学》共分三卷,一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和"超立体"的作图,但它实际是代数问题,探讨方程的根的性质。从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种"普遍"的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。
地理学是人类认识自身所处的生活环境,应对粮食生产、交通障碍、资源匮乏、气候变迁等一系列生存难题不可或缺的手段。今天,海平面上升、森林过度砍伐、物种灭绝、快速城市化和大规模移民等挑战日益严峻,地理学的意义愈发凸显。本书简明扼要地介绍了地理学的研究主题、方法、学科意义和价值,梳理了地理学的发展历程,为读者打开了地理学的大门。