这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,*近由原作者进行了全面更新。第1部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。 《拓扑学》(原书第2版)较大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。
本书为 十二五 普通高等教育本科*规划教材《分析化学》(第6版,上册)的配套教学参考书。全书共11章,编写顺序与主教材一致,对主教材的思考题和习题进行了详细解答,部分章节还增加了一些补充题。 本书既可作为高等学校化学类及相近专业的本科生学习分析化学课程的习题集,又可作为高年级学生考研复习阶段的参考资料,同时也可供广大教师作为教学参考书使用。
【全3册】生物太好玩 物理太好玩 化学太好玩
如果你是一个有 数学焦虑症 的人,你可能不会相信有一天你会爱上数学。 原因在于,我们在学校所学的数学知识看上去不过是一堆沉闷的规则、定律和公理,都是前人传下来的,而且是不容置疑的。在《魔鬼数学》中,世界知名数学家乔丹?艾伦伯格告诉我们这样的认识是错误的。数学与我们所做的每一件事都息息相关,可以帮助我们洞见在混沌和嘈杂的表象之下日常生活的隐性结构和秩序。数学是一门告诉我们 如何做才不会犯错 的科学,是经年累月的努力、争论所锤炼出来的。 你应该提前多长时间到达机场?民意调查的结果真的能代表人们的意愿吗?为什么父母都是高个子,孩子的身高却比较矮?用什么策略买**才能中大奖?《魔鬼数学》运用数学方法分析和解决了很多的日常生活问题,帮助数学门外汉习得用数学思维思考问题的技能。 作者用数
怕死是人类内心最深处的恐惧,也是我们这个高智商物种独有的恐惧。 3位美国社会心理学家在世界各地开展了长达30年、超过500次的实验研究,提出了著名的 恐惧管理理论 ,揭示了应对各种有意识和无意识的死亡念头对我们生活的深刻影响。 积极影响是,对于死亡的恐惧引导着艺术、语言、经济、科学的发展。消极影响则是,对死亡的恐惧会在我们身上触发一系列不幸的心理现象和防御行为。 认识到死亡终至,使我们刷爆信用卡,钟爱奢侈品和昂贵的轿车,往脸上涂抹化妆品或整形,像疯子一样飙车,渴望青史留名 但是,我们不必任由这种藏在意识深处的恐惧影响我们的生活。在清楚地看见它对我们的影响之后,我们可以更好地向死而生,对自己所做的选择和采取的行动变得更加自信。
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,不仅包括由于数学分析的需要而产生的线性代数的论题,还广泛选择了其他相关学科如微分方程、*化、逼近理论、工程学和运筹学等有关的论题。本书主要内容有:特征值、特征向量和相似性、酉相似、schur三角化及其推论、正规矩阵、标准形和包括jordan标准形在内的各种分解、lu分解、qr分解和酉矩阵、hermite矩阵和复对称矩阵、向量范数和矩阵范数、特征值的估计和扰动、正定矩阵、非负矩阵。 本书逻辑清晰,结构严谨,既注重教学又注重应用。在每一章的开始,作者都介绍几个应用来引入本章的论题以激发学习兴趣。在章节末尾,作者还独具匠心地编排了许多具有探索性和启发性的习题,引导读者提高描述和解决数学问题的能力。本书是一本畅销的教材,对从事线性代数纯理论研究和应用研究的人
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书主要介绍流式细胞术的原理、操作及应用,分为概述、流式细胞仪的原理、流式图、流式细胞术的基本操作与技巧、流式分析术的应用和流式分选术的应用6个部分。概述部分介绍基本概念和几款常见的流式细胞仪;原理部分具体介绍流式细胞仪的液流系统、光路系统、检测分析系统和分选系统;流式图部分主要介绍了流式通道、流式直方图、流式散点图和流式等高线图;操作部分介绍了样品制备、荧光素偶联抗体及标记、光电倍增管电压设定、对照设置、补偿调节、阈值设定、死细胞问题处理、分选模式选择、上样速度控制、分选设门原则、分选基本步骤等内容;流式分析术的应用部分具体介绍了流式细胞术在免疫学方面的应用,并且扩展到基础医学和生物学方面的应用;流式分选术的应用部分阐述了不同条件下流式分选的策略选择和注意事项,同时还介绍了
本书基于美国乔治梅森大学的 “科学中的重要思想” 这门课程而写,共13章,内容包括力学、热学、电和磁、波、相对论、量子力学和化学键、材料等内容,由浅入深地介绍了物理学和化学的基本概念和知识。本书的特点是每章都有一个以辐射图的形式呈现的重要科学思想,并且每章开始都围绕着这个重要思想对物理学和化学的各领域进行简明阐述。本书不要求读者具备高深的专业知识,适合那些有兴趣了解物理学和化学世界的人们作为科普读物阅读,也可作为高中生、大学生入门级的物理学和化学通识教材。
本书旨在指导学生初步掌握数学建模的思想和方法,共分两大部分:离散建模和连续建模,通过本书的学习,学生将有机会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。本书对于用到的数学知识力求深入浅出,涉及的应用领域相当广泛,适合作为高等院校相关专业的数学建模教材和参考书,也可作为参加国内外数学建模竞赛的指导用书。
本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
本书这本经久不衰的畅销书出自一位著名数学家G·波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕“探索法”这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何“推理”性问题——从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两