《哲理数学概论(修订版)》论及哲理数学的基本理论及其在人文社会科学、中医学及政治、经济、社会、文化、科学和国家宏观决策等诸多领域的应用,对于落实科学发展观和实现中医现代化及人文社会科学数学化具有十分重要的意义。哲理数学是一门研究自然、社会和人生在深层及在宏观上存在的联系和数量关系的科学,是与传统数学根本不同的新数学。它区别于传统数学的本质特征在于实现了哲学思维与数学思维、定性研究与定量研究、辩证逻辑与形式逻辑、传统文化与现代科学的有机结合。其基本理论包括基本属性论、关联偏差论、中心变量论、辩证关系论、元系统论和阴阳五行新论,其中,前四论是基础,元系统论是核心,主要论及自然系统、社会系统、符号系统诸种属性之本原。 《哲理数学概论(修订版)》适合哲学、数学、中医学和社会科学诸
《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的适用对象包括:中学信息学奥林匹克竞赛选手及辅导老师、大学ACM程序设计比赛选手及教练、高等院校计算机相关的师生、程序设计爱好者等。数学是计算机程序设计的灵魂。利用数学方面的知识、数学分析的方法以及数学题解的技巧,可以使得程序设计变得轻松、美观、高效,而且往往能反映出问题的本质。在外各项程序设计比赛(比如,ACM、NOI)活动中,越来越多地用到各种复杂的数学知识,对选手的数学修养要求越来越高。编写《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的目的就在于给广大ACM队员、NOI选手以及编程爱好者,分析一些程序设计中常用的数学知识和数学方法。
本书源于几位作者任教的加州大学伯克利分校、斯坦福大学等高校开设的相关课程。这些课程紧随大数据时代和金融科技的热点,面向金融工程和计算金融项目的学生。当今,量化交易策略及其相关的统计模型和方法、知识表达、数据分析和算法设计以及信息学的重要性越来越高。在此背景下,本书从多学科角度对于量化交易进行了综合阐述,同时也为学术研究和金融实务搭建了桥梁。 量化交易涉及多个学科,且横跨学术界与业界。几位作者结合他们在多个学科的学术背景和丰富的业界工作经验,在撰写本书过程中综合考虑了不同类型读者的核心需要。本书的目标受众既包含高年级本科生、硕士生等在校学生,也包含有志于学习量化交易领域知识和现代交易实务的交易员、量化分析师以及监管者等。考虑到目标受众的背景和兴趣的差异,本书对于章节进行了特别安
Thisvolumeisapletelynewversionofthebookunderthesametitle,whichappearedin1981asVolume9intheseries"ProgressinMathematics,"andwhichhasbeenoutofprintforsometime.Thatbookhaditsorigininnotes(takenbyHassanAzad)fromacourseonthetheoryofLinearalgebraicgroups,givenattheUniversityofNotreDameinthefallof1978.Theaimofthebookwastopresentthetheoryoflinearalgebraicgroupsoveranalgebraicallyclosedfield,includingthebasicresultsonreductivegroups.Adistinguishingfeaturewasaself-containedtreatmentoftheprerequisitesfromalgebraicgeometryandmutativealgebra.
本书分两部分,上部为堆垒素数论;下部为指数和的估计及其在数论中的应用。 部分是关于堆垒素数论方面苏联维诺格拉陀夫院士的研究方法和作者自己的研究方法的总结性论著。在这部分中给予维诺格拉陀夫院士的中值定理以显著的中心地位,并且改进了它。作者把华林问题与哥德巴赫问题的研究方法结合起来,并把华林问题一方面推广到每一加数是整系数多项式的情形,一方面限制变数仅取素数值。作者把塔锐问题也加上了变数只取素数值的限制,同时又讨论到更广的素未知数的不定方程组。 下部主要讨论了指数和的各种估计方法及其应用,特别讨论了这些方法对Waring问题及Голъдбах问题的应用。除此而外,也谈到了解析数论的其他一些问题与方法。这部分不仅综合了这几方面的结果与文献,更重要的是对其中绝大部分重要的结果都给出了较完备的
陈国旺编著的《索伯列夫空间导论》主要讲述索伯列夫空间一般理论和在非线性偏微分方程中的应用。内容涉及Lebesgue空间Lp(Ω)及其基本性质;整数阶索伯列夫空间Wm,p(Ω)及其性质;Wm,p(Ω)空间的嵌入定理、紧嵌入定理和插值定理以及连续函数空间的嵌入定理。论述研究非线性发展方程时,常用到的含有时间的空间和含有时间的索伯列夫空间。介绍类似于索伯列夫空间嵌人定理的离散函数的插值公式,并利用离散函数的插值公式证明广义Schrodinger型方程组初边值问题整体广义解的存在性。讲述速降函数、缓增广义函数以及它们的Fourier变换和Lebesgue空间的Fourier变换,分数阶索伯列夫空间Hs(RN)和Hs(Ω)及其性质。介绍近年来外关注的几个非线性发展方程的初边值问题和Cauchy问题解的存在性以及解的爆破现象和解的渐近性质,使读者较快地利用索伯列夫空间这个有力理论工
本书是利用作者A.б.瓦西里耶娃在20世纪60年代提出的“边界层函数法”,对奇异地依赖于小参数的常微分方程组、积分一微分方程组和时滞微分方程组等各种非线性系统定解问题进行近似求解和渐近分析的专著。其特点是系统地论述该方法的理论基础和运用该方法对各种问题的渐近解进行构造的过程,而且对定理、命题和结果都给出详细的推导和论证,是一本关于这类非线性微分方程组奇异摄动问题的基本理论著作。 本书适合于从事渐近方法的研究生、大学生、应用数学工作者以及需要处理各种非线性奇异摄动方程组数学模型的科技工作者,对于需要求解非线性方程组的物理、力学和工程技术人员也是一本有用的参考书。
本书是一本全面介绍分形几何理论及其在各领域应用的专著。全书分成两部分,部分阐述了分形与分形几何的一般理论,包括维数的各种概念及计算方法,分形的局部结构,分形的射影、乘积和交集等;第二部分主要是分形的应用举例,包括自相似集和自仿射集、函数的图、数论和纯数学中的例子、动力系统、Julia集、分形及物理应用等。本书还提供了课程建议和较为全面的参考文献。 本书对分形的介绍深刻而全面,可作为数学工作者和科研人员学习分形的参考书;合理地选择适当的章节,也可作为高年级本科生和研究生的教材。
罗巴切夫斯基、库图佐夫编著的《罗巴切夫斯基几何学及几何基础概要》讲述罗巴切夫斯基几何学及几何基础概要,共为八章,章与欧几里得公设等价的一些命题第二章关于罗巴切夫斯基几何的一些事实第三章在罗巴切夫斯基平面上的相互位置,第四章罗巴切夫斯基几何的面积论,第五章欧几里得《几何原本》概观第六章基本对象,基本对象间的基本关系及几何公理,第七章几何体系的解释观念,第八章公理的协和型和独立性,同构。《罗巴切夫斯基几何学及几何基础概要》适合大、中学师生及数学爱好者的使用和收藏。
本书是目前流行于欧美高校的经济数学教材书之一,其主要特色是运用拓扑、流形等现代数学观点,燕结合经济模型,向经济类专业的学生介绍普遍运用于微观,向经济类专业的学生介绍普遍运用于微观、宏观经济理论研究的各种主要数学方法。该书不仅向读者介绍了集合、度量空间与线性变换等经济娄学类教冬书很少涉及的现代娄学内容,而且结合微积分的知识,形象地说明凸集、上半边续、下半连续、凹函数等微观经济分析中的常用概念。该书围绕经济模型的优化问题,讨论了各种非线性动态优化方法及其运用,从而帮助解决经济类专业的学术缺乏非线性动态优化知识的问题。 本书不但包含了大量经济模型的应用实例,而且还提供了近200题的习题,并作了详细的解答,由此帮助读者更好地理解与掌握经济数学的知识。本书基本上涵盖了研究生阶段的经济数学
This book has its origins in two short courses given by the author in Bologna and Torino, Italy during the Fall of 1985. At that time, connections between statistical physics and the Jones polynomial were just beginning to appear, and it seemed to be a good idea to write a book of lecture notes entitled Knots and Physics. The subject of knot polynomials was opening up, with the Jones polynomial as the first link polynomial able to distinguish knots from their mirror images. We were looking at the tip of an iceberg,t The field has grown by leaps and bounds with remarkable contributions from mathematicians and physicists - a wonderful interdisciplinary interplay. In writing this book I wanted to preserve the flavor of those old Bologna/Torino notes, and I wanted to provide a pathway into the more recent events. After a good deal of exploration, I decided, in 1989, to design a book divided into two parts. The first part would be binatorial, elementary, devoted to the bracket polyno- mial as state model, partitio