欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。
本书所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;本书系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读本书只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 本书适合大中师生及数学爱好者使用。
是一部现代数学名著,一直受到数学界的推崇。作为Rudin的分析学经典著作之一,本书在西方各国乃至我国均有着广泛而深远的影响,被许多高校用做数学分析课的必选教材。本书涵盖了高等微积分学的丰富内容,最精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。第3版经过增删与修订,更加符合学生的阅读习惯与思考方式。 本书内容相当精练,结构简单明了,这也是Rudin著作的一大特色。 与其说这是一部教科书,不如说这是一部字典。
《奇异摄动问题中的空间对照结构理论》由倪明康、林武忠所著,本书共分4章。章主要介绍奇异摄动理论的一些基本概念,以及奇异摄动微分方程初边值问题形式渐近解的构造和余项估计,这些都为引入空间对照结构理论打下了基础;第2章主要介绍二阶奇异摄动常微分方程的内部层问题,即阶梯状空间对照结构,其中包括了阶梯状解的形式渐近解的构造,转移点的确定,并用微分不等式方法证明了解的存在性和给出了余项估计;第3章主要介绍奇异摄动常微分方程组的阶梯状空间对照结构,其中包括了各种类型的奇异摄动微分方程组,从二阶奇异摄动微分方程组着手一直到高阶奇异摄动微分方程组为止,不但构造了渐近解,而且用缝接法证明了解的存在性;第4章主要介绍奇异摄动抛物型方程中的转移型空间对照结构,这里的内容更丰富,所得到的许多结果都是以数
《数学简史(第四版)》精心叙述历史的小书初版是在1948年,到现在已经是第四版了。《数学简史(第四版)》从史上现存份文件开始直至20世纪中叶,讲述了数学各个领域里的发展主流,无数的学生、研究人员、历史学者、专家——总之一句话,每一个对数学有兴趣的人——都会觉得《数学简史(第四版)》引人入胜、回味无穷。《数学简史(第四版)》作者D.J.斯特罗伊克从古代近东开始,沿着在埃及、巴比伦、中国和阿拉伯发展出的思想和技术,探究诸如埃及的《莱茵德纸草书》、中国的《算经十书》、印度的《悉昙多》等手稿,再从爱奥尼亚理性主义直到君士坦丁堡失陷来看待希腊和罗马的发展,谈到中世纪欧洲的思想和文艺复兴潮流,分析17世纪和18世纪的贡献,对19世纪的观念做出了富有启发性的阐述。他没有遗漏任何数学史上的重要人物——欧几里得、
传统的分布式应用不会切入微服务、快速数据及传感器网络的响应式世界。为了捕获这些应用的动态联系及依赖,我们需要使用另外一种方式来进行领域建模。由纯函数构成的领域模型是以一种更加自然的方式来反映一个响应式系统内的处理流程,同时它也直接映射到了相应的技术和模式,比如Akka、CQRS以及事件溯源。本书讲述了响应式系统中建立领域模型所需要的通用且可重用的技巧——首先介绍了函数式编程和响应式架构的相关概念,然后逐步地在领域建模中引入这些新的方法,同时本书提供了大量的案例,当在项目中应用这些概念时,可作为参考。
本书是一本黎曼几何的入门教材,内容包括:微分流形引论、张量分析、黎曼几何基础、测地线理论及子流形几何。本书对研究黎曼几何的三种表示法——不变形式法、活动标架法和自然坐标法——作了统一的处理,介绍了微分流形与黎曼几何中的各种基本概念和技巧,兼顾到经典理论和近代进展的内容,以使读者在学完本教程后能独立从事研究工作。修订版还增加了6个附录,以适应读者进一步的要求。本书可作为综合性大学、师范院校数学系各专业高年级选修课教材及研究生教材,也可供数学和物理学工作者参考。