欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。
《几何原本》成书于公元前三百年左右,全书十三卷,是欧几里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人的成果。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。全书章节安排严谨,由定义、公设、设准、命题(定理)、证明,以及符号和图像所构成,《几何原本》被翻译成世界上几乎所有的文字,对人们理性推演能力的影响,即对人的科学思想的影响深刻且巨大。
《数学与人文》的首卷本登载了对主编的访谈,他们对本丛书的宗旨做了很详细的阐述。 在首卷本的“数学科学”、“数学星空”、“数海钩沉”、“数学魅力”、“数学教育”等栏目中,讲述了中外数学史和众多名家的生动故事、趣闻轶事,介绍了数学教学和学术研究中的经验体会,让读者看到了数学的趣味性、严谨性和它的无处不在。 《数学与人文》的创版适逢新中国成立60周年大庆,所以在首卷本中设立了新中国60年数学发展的专题。其中刊登了丘成桐教授撰写的“中国高等教育”一文,他从一个数学大师的角度纵横古今地畅谈了他所理解的中国高等教育的发展、现况、问题和展望;回顾了改革开放以来的中国数学会,讲述了国际数学家大会在我国召开的曲折过程;还介绍了三个数学分支(代数,数论,调和分析)的发展。 我们期望本丛书能受到广大学生和
本书由埃克朗所著,乐观主义者认为当今世界是可能的世界,悲观主义者却认为未必尽然。但什么是可能的世界呢?我们怎样定义它呢?是那个以的方式运转的世界吗?还是那个生活于其中的大多数人感到舒适和满足的世界?在17世纪和18世纪之间的某个时间,科学家们感到他们可以回答这个问题了。《可能的世界--数学与命运》就是关于他们的故事。伊瓦尔·埃克朗带领读者踏上了一个用科学方法展望可能世界的旅程。他从法国数学家莫培督开始,莫培督的作用量原理断言自然界中的万物以需要作用量的方式发生。埃克朗说明这一思想是科学上的一个关键突破,因为这是对化概念或和最起作用系统的设计的次表述,尽管后来作用量原理被细化并作了很大修改,但是从中产生的化概念几乎触及到今天的每一门科学学科。沿着化的深刻影响以及它影响数学、生物学、经
本书是关于一般拓扑的一部经典著作.书中系统地介绍了一般拓扑的基本知识.正文共分七章,包括拓扑空间、Moore-Smith收敛、乘积空间和商空间、嵌入和度量化、紧空间、一致空间、函数空间.此外,还有一章预备知识和一个附录.每章之后有大量问题,作为正文的补充和延伸,有助于读者更好地理解正文的内容.书末由译者加写了一个附录,介绍了早期不分明拓扑学发展的概貌. 本书正文七章由吴从忻翻译,其余由吴让泉翻译.增添的附录由吴从忻撰写. 本书可供高等院校数学系师生及有关的专业工作者参考.
本书为“专题史系列”之一。中国传统数学有着悠久历史,是中国传统科学文化百花园中的一朵奇葩,也是世界文化宝库中一颗璀璨的明珠。 本书分先秦至汉唐、宋辽金元、清中叶和清末等历史时期,分述算学家生平和自《九章算术》以迄《致曲术》等主要算学著作的内容,然后分数字与记数法、算具与算术、数的概念的扩展、几何问题与勾股测量、高次方程数值解法、天元术和四元术、高阶等差数列、同余式理论、八卦与幻方等方面叙述中国传统算学理论和计算方法等进行了叙述。同时,也叙及中国古代的算学教育和中外数学交流以及中国现代数学研究的发端。最后,对中国传统数学的基本特征作了概括性的探讨。
本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
《548个来自美苏的数学好问题》收集了原苏联著名数学家A-M.雅格龙教授和N-M.雅格龙教授收集的169个经典数学问题以及《美国数学月刊》中刊载的379个经典数学问题.《548个来自美苏的数学好问题》中不少问题曾经直接被用作数学竞赛的试题,是各级各类竞赛命题的好素材, 《548个来自美苏的数学好问题》可作为数学竞赛选手、数学竞赛教练员及广大数学爱好者的参考用书. 内页插图
数论是研究数的性质的一门学科。《数论经典著作系列:初等数论(3)》从科学实验的实际经验出发,分析了数论的发生、发展和应用,介绍了数论的初等方法。本书为《初等数论(2)》的后续,介绍了自然数的一些有趣的性质、数论中常见的数、平方剩余及其计算方法等数学方法。每章后有习题,并在书末附有习题解答。本书写得深入浅出,通俗易懂,可供广大青年及科技人员阅读。
本书全面介绍了Delaunay三角剖分及其对偶图——Voronoi图的相关技术,采用灵活性更好的带权Dela眦v三角/四面体剖分来解决限定三角剖分的问题,所得到的三角网格具有同Delaunay三角网格相似的优良性质。建立起了一套三角形/四面体的质量评价体系,并给出了三角形/四面体的质量控制的算法。对计算几何中影响算法健壮性的一些因素进行了研究和分析。最后,给出了Ddaunay三角剖分可视化应用的一些实例。 本书可供计算机及其相关领域的科研人员及高等学校相关专业师生参考使用。
《二阶椭圆型偏微分方程(第二版修订版)》主要阐述二阶拟线性椭圆型偏微分方程的一般理论以及为此而必需的线性理论,着重于有界区域上的DirichIet问题。书中的内容源于作者在斯坦福大学为研究生课程所写的讲义,但大大超出了这些课程的范围,并包括了位势理论、泛函分析等预备性章节;第二版修订版增加了Nikolai Krylov的导数Holder估计的相关内容,这—估计提供了椭圆型(和抛物型)高维完全非线性方程的古典理论进一步发展的基本要素。《二阶椭圆型偏微分方程(第二版修订版)》是一本自封闭的严谨的教学参考书,适合相关专业的研究生和高年级本科生阅读,也可供其他科技工作人员参考。
为什么在星期五购买彩票比较好?为什么淋浴总是太热或太冷?哪一个古典谜题在战争中被盟军轰炸破坏了?这些问题和其他许多问题在罗勃·伊斯特威、杰里米·温德姆编著的《三车同到之谜——隐藏在日常生活中的数学》这本有趣而且内容丰富的书中得到了解答。 《三车同到之谜——隐藏在日常生活中的数学》这本书,对于任何希望提醒自己——或初次发现——数学几乎与我们所做的每一件事有关的人,都是有用的。约会、烹调、驾车出游、赌博和救生技术,无不联系着有趣的数学问题,对于这些问题,你将在本书中获得解释。 你将发现战时做吐司的节能技术,奇特的7月4日巧合,澳大利亚兔的指数生长,和在雨中奔跑而不淋湿的惊人公式。 无论你拥有天体物理学学位,或者离开学校后从未接触过数学问题,这本书将改变你观察周围世界的方式。
数理逻辑是计算机科学的基础之一,在模型与系统的规约与验证等方面有着广泛的应用。随着当今软硬件产品日趋复杂,数理逻辑已经成为越来越多设计开发人员的日常工具。 本书适合作为高等院校计算机及相关专业的数理逻辑/形式化方法课程教材,涵盖了命题逻辑,谓词逻辑、模态逻辑与 Agent、二元决策图、模型检查和程序验证等内容。与传统数理逻辑教科书相比,它的主要特色就是紧紧围绕软硬件规约和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法,紧致性理论和Lowenhenm-Skolem定理,并介绍了Alloy语言和Nusmv工具。 本书自出版以来受到广泛好评,已经被包括美国普林斯顿大学、卡内基-梅隆大学、英国大学、德国汉堡大学、加拿大多伦多大学、荷兰 Vrije大学,印度理工学院在内的多个国家几十所高校采纳为教
本练习册与同济大学数学系编写的第七版《高等数学》下册(高等教育出版社出版)相配套,共包括两部分内容:练习题和参考答案。按时完成练习作业是理工科大学生巩固高等数学课堂学习效果的基本要求,所附参考答案可方便学生完成作业后及时检查。 为了方便教师和学生收交作业,本练习册分为A、B两册,即奇数周作业为A册,偶数周作业为B册。
《偏微分方程的有效动力学(英文)》是国外数学著作原版系列中的一本。《偏微分方程的有效动力学(英文)》主要介绍几类重要的偏微分方程及其动力系统的动力学研究成果。《偏微分方程的有效动力学(英文)》系统地介绍了动力系统动力学的研究方法和作者近期的研究成果。
西格尔所著的《数》系统地介绍了数理论,内容分四章:章介绍了数论的一些古典结果;第二章专门讲述适合于齐次线性微分方程组的某些函数数值的代数无关性;第三章中证明了数ab的性,即著名的Hilbert第七问题;最后,第四章介绍了Schneider关于椭圆函数的算术性质方面的一些研究结果。 《数》适合于大学、中学师生及数学爱好者。
全书共分6章,包括三角形五心的概念和性质,三角形五心的坐标表示、向量形式及应用,三角形五心间的距离,圆内接四边形中三角形的五心性质及应用,三角形五心性质的综合应用等内容,每章节后配有习题,书后附有习题参考答案。本书适合于初、高中学生,初、高中数学竞赛选手及教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课座教材及、省级骨干教师培训班参考使用。