概率论是数学学科里很基础、很年轻、应用很广泛的一门学科,它不仅和我们日常生活息息相关,更是当今大火的大数据和人工智能技术的基础。不学概率论,就没法看懂前沿科技,没法理解现实世界,更没法预知和抓住未来。 作者通过生活中的案例,从通识的视角,带读者学习正态分布、幂律分布、大数定律、贝叶斯计算、方差和期望,让这些内容不再是高深莫测的数学概念,而是你能运用于自己决策的数学工具。 只要会四则运算,你就能够通过这本书学会概率论的相关概念,培养概率论思维,并将其应用于日常生活中,提升决策能力。
本书是系统阐述组合数学基础、理论、方法和实例的优秀教材,出版30多年来多次改版,被mit、哥伦比亚大学、uiuc、威斯康星大学等众多国外高校采用,对国内外组合数学教学产生了较大影响,也是相关学科的主要参考文献之一。 本书侧重于组合数学的概念和思想,论述了鸽巢原理、排列与组合、二项式系数、容斥原理及应用、递推关系和生成函数、特殊计数序列、二分图中的匹配、组合设计、图论、有向图及网络、polya计数法等。此外,各章均包含大量练习题,并在书末给出了参考答案与提示。 本书适合作为高等院校相关专业组合数学课程的教材。
本书利用图像化数学思维,将数学概念和知识变得生动形象;通过逐步的演绎,展示了数学知识的内在逻辑和层次,帮助读者提高学习效率并提升应用数学知识的能力。本书强调启发性的学习方式,在知识呈现上给予读者充分的思考空间,以培养其独立思考的能力。这是一本每个人都应该读一读的数学科普书,它能让你从多个角度看到数学不同的样子,从而体会到数学学习别样的乐趣。
本书以抛物型方程、双曲型方程和椭圆型方程为基本模型,系统地阐述有 限差分方法的基础理论和主要格式。在详细介绍每个格式的时候,一些重要的 数值设计思想和理论分析技术得到详尽的讨论,有限差分方法同其他数值方法 的联系与区别也得到简要的论述。本书既注重理论的严谨性,也关注算法的实 现细节;内容既注重历史的发展轨迹,也关注最新的研究进展。
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中。本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。
量子计算是一个多学科领域。 本书致力于利用一些 量子力学奇妙的方面扩大我们的计算视野。通过介绍面向计算机科学领域的量子计算, 本书将带领读者浏览这个引人入胜的尖端研究领域。本书以一种通俗易懂但又严谨的方式,采用了每个计算机科学的学者和学生都熟悉的方法和技术。读者无需具有任何高等数学或物理背景。前四章介绍的背景知识,包括复数,复向量空间,从经典计算到量子计算的飞跃, 和基础量子理论。在随后的七章,作者分别从计算机科学的特定角度来描述量子计算的不同方面,比如:计算机体系结构, 算法,编程语言,理论计算机科学,密码学,信息理论和硬件。本书为计算机科学专业的学生和研究人员提供循序渐进的示例,两百多个练习和相应的答案,以及应用量子计算思想的编程练习。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为 基础篇 和 提高篇 ,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为基础篇,分为平面几何基础、立体几何基础和打开证明之门三个章节。本书较为重视几何语言,在进入具体图形的学习之前,用大量篇幅详细讲解了定义、命题、条件、结论、公理、定理、性质等基本概念,有助于读者区分理解。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
本书主要内容包括:n维空间的射影几何、代数函数、平面代数曲线的基本概念和性质、点的概念、一般广义点和代数流形、代数流形不可约分解算法、代数对应这一非常重要概念以及有广泛应用的计算常数原理,代数流形的对应形式和构造方法、重数的概念和流形与超曲面之间交、线性系理论、一种把曲线变成没有重点的曲线位的方法,Bertini定理、著名的Noether定理,Riemann-Roch定理、平面曲线的奇点、包括相交重数、邻近点以及Cremona变换对邻近点的影响。
在《巧合》一书中,数学家约瑟夫 马祖尔带领我们走进貌似不可能发生的事件,风趣幽默地向我们解释了生活中的惊喜瞬间。他结合大千世界中离奇而真实的巧合故事,向我们阐释了概率的概念。你觉得你们班上有同学与你同一天生日的可能性大吗?如何让陪审团相信凶案现场找到的DNA并不能证明该DNA的主人曾出现在案发现场? 正如马祖尔所说,如果事情有可能发生,不论其可能性多么小,它必定会在某个时候发生。 如果您好奇发生在生活中的小小决定*终将如何导致离奇事件的发生,这本书必将是您的*。作为数学迷和故事迷的书目,《巧合》有助于我们了解偶然与必然的实质。
我们将在第一章介绍关于纽结与链环的基本概念,然 后在第二章用上面提到的初等讲法来介绍琼斯多项式,并在第三章用它来证明泰特关于交错纽结的猜测.这是本书的一条主线,这条主线可以叫作绳圈的拓扑学.
在人类的历史长河中,数学家们总结发现过许多奇妙的数学问题,它们如夜空中的繁星,闪烁着熠熠星辉,体现了客观世界的规律之美、人类的智慧之美以及自然界的和谐之美。直到今天,这些经典的数学问题仍然受到大家的喜爱。阅读并思考这些问题,是启迪数学思维、培养兴趣爱好、拓宽知识视野的好方法。 本书精选了32个专题,每个专题都以故事的形式分享了数学问题背后的历史故事及人物轶事,设置了同类的例题进行详细讲解,还精选了8道习题供读者练习提升。快来和古今中外的数学家、物理学家等历史上的超强大脑们,做一次穿越时空的亲密接触吧!本书适合作为小学中高年级学生和初中生的数学课外读物,也可供数学爱好者阅读。
全书共分为八章.第一章介绍与椭圆曲线有关的不定方程的知识,第二章介绍椭圆曲线的历史起源,第三章介绍椭圆曲线的重要性质,第四章介绍与椭圆曲线理论有关的一个极为重要的猜想,即Birch和Swinnerton-Dyer猜想(简称为BSD猜想),第五章介绍椭圆曲线在证明费马大定理中的应用,第六章介绍椭圆曲线在质性判定中的应用,第七章介绍椭圆曲线在整数分解中的应用,第八章介绍椭圆曲线在现代公钥密码体制中的应用.