《几何原本》成书于公元前300年左右,全书13卷,是古希腊数学家欧几里得的一部不朽之作。它既是一本数学著作,也是哲学巨著,标志着人类 完成了对空间的认识。《几何原本》自问世之日起,在长达2000多年的时间里,历经多次翻译和修订,自1482年 印刷本出版,至今已有1000多种不同版本。 欧几里得建立了定义和公理,并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,并系统地总结了泰勒斯、毕达哥拉斯及智者学派等前代学者在实践和思考中获得的几何知识,集整个古希腊数学的成果与精神于一身。对人们理性推演能力的影响,即对人的科学思想产生了深刻且巨大的影响。
本书为“专题史系列”之一。中国传统数学有着悠久历史,是中国传统科学文化百花园中的一朵奇葩,也是世界文化宝库中一颗璀璨的明珠。 本书分先秦至汉唐、宋辽金元、清中叶和清末等历史时期,分述算学家生平和自《九章算术》以迄《致曲术》等主要算学著作的内容,然后分数字与记数法、算具与算术、数的概念的扩展、几何问题与勾股测量、高次方程数值解法、天元术和四元术、高阶等差数列、同余式理论、八卦与幻方等方面叙述中国传统算学理论和计算方法等进行了叙述。同时,也叙及中国古代的算学教育和中外数学交流以及中国现代数学研究的发端。最后,对中国传统数学的基本特征作了概括性的探讨。
本书是奥博丛书之一。 本书是数学解题研究方面的专著,介绍了解题基础知识和解题理论。 这套奥博丛书,其中就有若干或许可以称为解题秘籍。当然,得到它之后,要成为解题高手,还得注意: 一、勤加练习,因为解题是实践性的技能,只能通过模仿和实践来学到它。 二、循序渐进,孔子说:“欲速则不达。”不能操之过急,一个问题或一种方法,弄清楚了,再往下看,切忌囫囵吞枣,食而不化。 三、不要迷信书本,“尽信书,则不如无书。”要成为真正的高手,不能依赖秘籍,而要自创新招。
约翰·塞巴斯蒂安·巴赫的音乐、自然界的基本力、魔方、配偶的选择有无共通之处?它们共同的特点是都具有某种对称性。对称性概念为科学和艺术之间、理论物理世界和我们日常生活的世界之间架起了桥梁。然而关于对称的“语言”——数学中的群论——却产生于最意想不到的来源:一种无法解出的方程式。几千年来,在遇到现在所说的五次方程之前,数学家已经逐渐解决了越来越困难的代数方程。但几个世纪过去了,五次方程仍然没有解,最后,两个数学天才彼此独立地发现了它不能用通常的方法解出,群论由此产生。这两个年轻的天才是挪威数学家尼尔斯·亨里克·阿贝尔和法国数学家埃瓦利斯特·伽罗瓦,他们最后都悲剧性地死去。事实上,伽罗瓦(时年20岁)在他致命的决斗前夕,草草地记录了他的证明的另一份简要总结,笔记本的边上有一句话:“我没
谢彦麟编著的《代数方程的根式解及伽罗瓦理论》是一位大学分析学教授在学习伽罗瓦理论时的心得体会,本书以还原历史的视角,以一元方程的求根公式讲起,配以大量简单例子帮助初学者通过自学掌握伽罗瓦理论这一抽象代数中的经典内容。 《代数方程的根式解及伽罗瓦理论》适合大学、中学师生及数学爱好者阅读。
本书为广大考生量身定做.作者匠心独运,在故事的框架下梳理着高中数学知识,剖析了280道题 涵盖高考的内容和题型,在题意挖掘、结构分析、背景揭示、思路形成、方法提炼、学生易错点预警、心理调节、思想总结等方面都有精辟生动的阐述.本书还探讨了高考命题动向、建立学科兴趣、培养意志 品质、增强自控力、生涯规划、中学生“早恋”等热点问题,引人入胜,润物无声.作者为全国名校深圳中学 的高三“钉子户”老师,同时又是一位小说家,功底扎实,文采斐然.深入而浅出,专业与创新,注定了本书 的和风行 本书适用于高中生及高中教师阅读参考.
本书是MATLAB数学建模应用系列书籍之一,以MATLAB R2016a软件版本为基础,根据数学建模的需要编写,包含了多种数学建模问题的MATLAB求解方法,是解决数学实验和数学建模的有力工具。全书共18章,分为前后两个部分,~10章属于前部分,1~18章属于后部分。前部分从MATLAB基础和数学建模基础知识介绍开始,详细介绍MATLAB程序设计、常用MATLAB建模函数、数学规划模型、智能优化算法、Simulink简介、MATLAB图像处理算法等内容; 后部分介绍了水质评价与预测、投资收益与风险、旅行商问题、很优捕鱼策略、裁剪与复原、DNA序列分类、卫星和飞船的跟踪测控、中国人口增长预测等8个典型建模问题的MATLAB求解方法,引导读者深入挖掘各种建模问题背后的数学问题和求解方法。很后,在附录中给出了MATLAB基本命令的介绍,便于读者使用和研究。本书以MATLAB数学建模基础为主线,结