这三本书涵盖了小学和初中阶段数学、几何、函数等学科的重点知识和学习方法,旨在帮助读者解决实际教学和学习中遇到的各种困难和痛点。首先,《不焦虑的数学》和《不焦虑的几何》从计算能力提升、难点讲解、思维方式培养等多个方面切入,为家长和孩子提供了一系列可行、实用的辅导方法,使家庭辅助教育更加丰富多彩。其次,《不焦虑的函数》则更深入地剖析了初中和高中阶段函数学习的要点,以及如何从小学平稳过渡到初中,并提供了针对性的学习思路和技巧,帮助学生和家长打好坚实的数学基础和提高成绩。 这三本书的共同特点是用例题详尽地分析知识点和考试技巧,帮助读者快速掌握数学、几何和函数等学科的核心内容,并有效解决学习中的各种困难。在阐述学科知识的同时,作者们不断强调正确的学习思维方式和习惯的重要性,从而帮助读
9787115630179 数学与生活4:函数是什么 59.80 9787115544568 数学与生活3 无穷与连续 59.80 9787115542083 数学与生活2 要领与方法 59.80 9787115370624 数学与生活(修订版) 69.80 《数学与生活4:函数是什么》 本书为日本数学家远山启的函数科普作品,书中以 理解函数 为线索,以人物对话的形式,从算术开始逐步讲解函数的本质概念及其发展,为读者完整呈现了函数概念,并引导读者理解 从静止走向运动、从离散走向连续、从运算走向关系 的数学思想。 本书可作为理解函数的科普读物,也可作为函数教学的参考资料。 《数学与生活3 无穷与连续》 不懂音符、乐理的人也能欣赏音乐,甚至可以成为音乐鉴赏家。 不懂数学公式的人,是否也能理解现代数学的体系与思考方法,领略其中令人惊叹的超越性美景呢? 本书是从 欣赏 的角度通俗解读现代数学的科普作品。书中用直观、生动
本书牛顿(Newton,1642 1727)用拉丁语写成,于1687年、1718年、1726年出版了三个版本。莫特(Andrew Motte,1696 1734)于1729年翻译出版了本书的英文版,卡加里(Florian Cajori,1859 1930)对莫特的英译本进行了修订,1934年由加利福尼亚大学出版社出版,本次影印的是1946年的第2印次本。
克莱因(Felix Klein,1849 1925)是19世纪末、20世纪初世界数学中心 德国哥廷根学派的领袖,并且热衷于数学教育的改革。本书是具有世界影响的数学教育经典,全书共分3册:册,算术、代数、分析;第二册,几何;第三册,精确数学与近似数学。本次影印前两册的英译本,译者为赫德里克(Earle Raymond Hedrick,1876 1943)和诺布尔(Charles Albert Noble,1867 1962),册用美国Dover图书公司的1945年版,第二册用Dover的1939年版,并将两册合刊。
本书试图从西方哲学的角度来审视数学与自然科学的发展。原书以德文写作,发表于1926年,反映了20世纪20年代的数学与物理学以及数学基础的大发展与大争论。1949年的英译本,又以6个附录的形式反映了其后20 年左右的科学发展,而且论述的范围也超出了物理学与数学,涉及其他学科的若干基本问题。
《沿着鹦鹉螺线滑行-建筑室内设计的数学思考》一书主要涉及了微积分、分形几何和幂律指数在建筑室内设计中的应用和启示。作者从自然界的最小作用量原理出发,探索了数与形之间的联系,以及不同系统之间的相似性。本书分为三个部分,第一部分介绍了微积分的基本概念和原理,以及它们在造型设计中的作用;第二部分介绍了分形几何的特点和美学,以及它们在自然界和艺术中的体现;第三部分介绍了幂律指数的规律和意义,以及它们在不同系统中的普遍性。本书旨在用数理逻辑为建筑室内设计提供理论依据和创新思路,是一本集科学、艺术和哲学于一体的跨学科著作,适合对建筑室内设计、数学和自然感兴趣的读者阅读。
每个人都得学数学,而多数人却不喜欢数学。问题出在哪里?本书作者告诉你,原因在于数学老师自己就不怎么喜欢数学!运气好的人,高中或大学时会遇到好的数学老师。本书作者正是一位对数学很有热情的老师,通过这本书,他要与你分享毕达哥拉斯、笛卡儿、费马、欧拉、凯莱、牛顿、莱布尼兹的智慧,娓娓道出数、方程式、级数、矩阵、微积分的奥秘。正如獤音乐要以听觉来感受,美术要以视觉来领略,数学必须以知识的器官来领会及欣赏。本书邀你一同来重新认识数学。
《经济、生态与环境科学中的数学模型》涵盖各种著名模型:经典模型(如柯布一道格拉斯生产函数模型,列昂惕夫投入产出分析,Verhulst-Pearl和Lotka-Volterra种群模型,等等)、世界动力学模型、切尔诺贝利核泄漏之后的水污染传播模型。本书采用独特的块-块模式进行模型分析,阐明如何通过描述基本实际过程的单个部分(块)建立这些模型,为实用模型的设计提供理论洞察。