本书牛顿(Newton,1642 1727)用拉丁语写成,于1687年、1718年、1726年出版了三个版本。莫特(Andrew Motte,1696 1734)于1729年翻译出版了本书的英文版,卡加里(Florian Cajori,1859 1930)对莫特的英译本进行了修订,1934年由加利福尼亚大学出版社出版,本次影印的是1946年的第2印次本。
本书从几个著名数学问题出发,深入浅出地讲解了与我国初高中的教学实际紧密联系的数学知识,并把知识内容与数学核心素养结合起来。在这条知识主线的周边,穿插介绍知识内容的历史发展过程,对相关数学分支在数学史上的地位进行深入思考,并辅之以数学文化、趣味知识、数学游戏、数学悖论等茂盛枝叶。全书共6章,第1章介绍无处不在的杨辉三角;第2章介绍当我们谈论正方体时,我们能够谈论些什么;第3章介绍了神奇的 2;第4章介绍斐波那契数列与黄金分割;第5章介绍圆锥曲线面面观;第6章介绍感悟数学的魅力与威力。 本书根据中学生的实际需要,并结合 500多幅精美的插图进行讲解,全书讲解清晰自然、特色鲜明,非常适合初高中学生、初高中数学教师、数学爱好者阅读。
佩捷、朱惠霖编著的《从比勃巴赫到德布朗斯--比勃巴赫猜想的历史(精)/影响数学世界的猜想与问题》详细介绍了德布朗斯证明比勃巴赫猜想的历程及相关的数学专业理论,本书适合于高等学校数学及相关专业师生使用,也可供数学史爱好者阅读。
集合论的主要概念(基数、序数、超限归纳)对于所有数学家都是最基础的,并非于研究数理逻辑或集合论拓扑的专家。通常分析、代数或拓扑学的课程只会给出基础集合论的一个概貌,然而事实上它足够重要、有趣和简单,值得慢慢地学习品味。 《集合论基础》使得读者能够以悠闲品味的方式学习集合论的内容,它适用于广大范围的各类读者,从本科生直至那些想要最终掌握超限归纳并且理解它为何总被Zorn引理替代的数学家。 《集合论基础》介绍了“朴素”(非公理化)集合论的所有主要内容:函数、基数、有序集和良序集、超限归纳及其应用、序数、序数上的运算。《集合论基础》还包括对Cantor-Bernstein定理、Cantor的对角构造、Zorn引理、Zermelo定理和Hamel基的讨论和证明。此外,书中还给出了150多道问题,循序渐进地揭示了集合论基本思想和方法,内
《 常数,黎曼面和模群(影印版)》用代数几何的思想和方法来研究 函数和数论,促进了这些领域的长足进步。但是,作者选择停留在古典观点上。因此,他们的陈述和证明都非常具体。熟悉 函数和数论的代数几何方法的数学家们,会在书中发现许多有趣想法,以及关于新老结果的详尽解释和推导。 该书精彩的部分包括对 常数恒等式的系统研讨、由模群子群表示的曲面单值化、分拆等式,以及自守函数的傅里叶系数等。 该书的预备知识要求对复分析有扎实的理解,熟悉黎曼面、Fuchs群以及椭圆函数,还要对数论感兴趣。该书包含对一些所需材料(尤其是关于 函数和 常数)的概述。 读者会在书中发现对分析和数论的古典观点的细致论述。该书包含了大量研究级水平的例题和建议,很适合用作研究生教材或者自学。
本书是 部《 》象数学通史,分三卷(先秦汉唐卷、宋元卷、明清卷),以时间为线索,系统而深入地阐述了先秦至明清的象数易学的发展历程。
域上二次型引论(影印版)
本书是 部《 》象数学通史,分三卷(先秦汉唐卷、宋元卷、明清卷),以时间为线索,系统而深入地阐述了先秦至明清的象数易学的发展历程。