本书这本经久不衰的畅销书出自一位著名数学家G 波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕 探索法 这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何 推理 性问题 从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
《几何原本》成书于公元前300年左右,全书13卷,是古希腊数学家欧几里得的一部不朽之作。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。《几何原本》自问世之日起,在长达2000多年的时间里,历经多次翻译和修订,自1482年首个印刷本出版,至今已有1000多种不同版本。 欧几里得建立了定义和公理,并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,并系统地总结了泰勒斯、毕达哥拉斯及智者学派等前代学者在实践和思考中获得的几何知识,集整个古希腊数学的成果与精神于一身。对人们理性推演能力的影响,即对人的科学思想产生了深刻且巨大的影响。
《费马大定理:一个困惑了世间智者358年的谜》是关于一个困惑了世间智者358年的谜题的故事。书中既有振奋人心的故事讲述方式,也有引人入胜的科学发现的历史。西蒙 辛格讲述了怀尔斯经过数年秘密辛苦的工作,终于解决了挑战性的数学问题的艰辛旅程。
本书这本经久不衰的畅销书出自一位著名数学家G 波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕 探索法 这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何 推理 性问题 从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
从数学的角度来看,世界是由微分和积分构成的。因此,学习微积分就是我们主动了解我们生活的世界的一种方式。微积分在数学中占据着重要的地位,是一个充满数学魅力和乐趣的领域。 然而,微积分的理论性非常强,学习难度大,是最容易挫伤学生学习数学积极性的部分之一。为了最大限度地发挥学生的主观能动性,在最短的时间内抓住并阐明本质,本书以师生对话的方式,配以简单的图片,用浅显易懂的文字说明了微积分的基本原理。 本书共包括四个部分,分别是:课前准备、60分钟揭开微积分神秘面纱的四大步骤、所谓 微分 是指什么?、所谓 积分 是指什么?。 本书通过日常生活中的常见事例说明了微积分的基本原理、公式推导过程及实际应用意义。本书讲解循序渐进,生动亲切,没有烦琐复杂的计算过程,是一本写给不擅长数学的成年人的学习微积
在中国古代科学技术的发展中,算学发展一直伴随着科技的发展,并且在解决技术与工程发展中的问题发挥出色。本书以图文并茂的形式为少年朋友揭开中国古代数学的神秘面纱。在这里,您将了解从 记数 到 算术 的发展过程,了解被称为 中国数制 的十进位值制记数法,了解古人计算面积和体积所使用的方法,了解《九章算术》《孙子算经》等重要典籍,了解神秘的 河图 与 洛书 、华容道、鲁班锁等经久不衰的古代益智游戏,领略中国古代数学的魅力。
文章从数字与数字类型讲起,介绍数字、数学运用的历史、趣味故事,数学在国际象棋、文学电影、艺术等方面的应用等,用生动活泼的语言向读者介绍生活中数学的运用,激发读者学习数学的兴趣,鼓励大家继续探索生活中的数学。
《笛卡尔几何》的问世,被誉为数学史上的伟大转折。笛卡尔对数学的重要贡献,正是他在《笛卡尔几何》中所创立的解析几何。他的这一成就,为微积分的创立奠定了基础,而微积分,又是现代数学产生和发展的重要基石。 《笛卡尔几何》被后世数学家和数学史家视作解析几何的起点。该书共分三卷:卷讲解尺规作图;第二卷讨论曲线的性质;第三卷借立体和 超立体 作图以探讨方程的根的性质。 笛卡尔力图建立一种 普遍 的数学,即把任一数学问题转化为代数问题,继而把任一代数问题归结为求解一个方程式,这便是 解析几何 ,或称作 坐标几何 。而平面直角坐标的建立,正是解析几何得以创立的关键。
圆作为平面几何的一部分,与其他任何组成部分具有同样的重要性。此外,它还是*一种可以画在球面上的 线 。这使得圆在几何学世界中也许比直线更加无所不在,因为直线在球面几何中是不存在的。本书考察的就是圆在几何学中发挥作用的那些*常见方面。 全书共11章,涉及圆所呈现的种种几何奇观,包括圆的历史、圆的各种关系、圆填充问题、尺规作图问题、切圆探究、摆线等,以及艺术作品和建筑中的圆,还用一整章讲述了球面几何学。
《自然哲学的数学原理》是牛顿所写的旷世巨著,是他 个人智慧的伟大结晶 。牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。在《自然哲学的数学原理》之后,人类在自然科学中的伟大成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。 《自然哲学的数学原理》标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。 《自然哲学的数学原理》不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
在人类的历史长河中,数学家们总结发现过许多奇妙的数学问题,它们如夜空中的繁星,闪烁着熠熠星辉,体现了客观世界的规律之美、人类的智慧之美以及自然界的和谐之美。直到今天,这些经典的数学问题仍然受到大家的喜爱。阅读并思考这些问题,是启迪数学思维、培养兴趣爱好、拓宽知识视野的好方法。 本书精选了32个专题,每个专题都以故事的形式分享了数学问题背后的历史故事及人物轶事,设置了同类的例题进行详细讲解,还精选了8道习题供读者练习提升。快来和古今中外的数学家、物理学家等历史上的超强大脑们,做一次穿越时空的亲密接触吧!本书适合作为小学中高年级学生和初中生的数学课外读物,也可供数学爱好者阅读。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为 基础篇 和 提高篇 ,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为基础篇,分为平面几何基础、立体几何基础和打开证明之门三个章节。本书较为重视几何语言,在进入具体图形的学习之前,用大量篇幅详细讲解了定义、命题、条件、结论、公理、定理、性质等基本概念,有助于读者区分理解。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
2000年,美国马萨诸塞州剑桥的克莱基金会发起了一场颇具历史意义的竞赛: 任何能够解决七大数学难题之一的人,在专家认定其解答正确之后,都可以获得100万美元的奖金。对这七大问题的解答(或者解答不出)将对21世纪的数学研究产生巨大的影响。这些问题涉及纯粹数学和应用数学中大多数*迷人的领域: 从拓扑学和数论到粒子物理学、密码学、计算理论甚至飞机设计。著名的数学阐释者德夫林在本书中向我们讲了这七大难题的内容、由来以及它们对数学和科学的意义。
本书为菲尔兹奖、日本学士院奖、日本文化勋章得主,日本数学家广中平?v先生的思想文集。书中以广中平?v先生与 奇点解消问题 的故事为线索,讲述了广中平?v在挑战 奇点消解问题 的过程中,对 数学学习 数学教育 以及 创造性思维 的独到感悟,以及对数学证明与发现的深入思考。另外,本书还收录了广中平?v先生研究生涯中的珍贵访谈、笔记、照片资料,是了解广中平?v先生数学思想以及创造性思维的佳作。
本书从历史的视角,向我们娓娓道来数学迷人的发展史,从古老的数学起源到现代的重大数学突破,展示了数学这一学科是如何从古巴比伦人、古希腊人和古埃及人的伟大发现,中世纪欧洲学者的发现,文艺复兴时期到现代的科学进步一步一步发展起来的。本书还介绍了那些非常重要的数学概念:从简单的算数、代数、三角、几何到微积分、无限和混沌理论。 现代数学看上去复杂深奥得可怕,但阅读本书并不需要深厚的数学知识。我们在日常生活中常常下意识地运用着数学,我们都是 民间数学家 。带上好奇心,踏上这一段让数学变得触手可及而又好玩有趣的奇幻旅程,你就会明白四次方程和三次方程的区别,顺便熟悉极限的概念,甚至能学会为你的金字塔建造一个水平的平台。 本书适合所有爱好数学的人阅读。
《数学概念的演变》是一本由一位杰出的数学家所著的杰作,它提供了一个独特的视角来看待数学的发展和演变。与研究数学的历史或哲学不同,怀尔德把数学视为一种广泛的文化现象。他的研究揭示了数和长度等概念是如何受到历史和社会实践的影响的。从初步的概念开始,本研究探讨了数的早期演变、几何的演变以及实数中对无穷的征服。对演变的过程进行了详细的考察,并以对现代的演变的研究结束。 《作为文化体系的数学》不能被看成是一部纯粹研究数学历史的著作。数与几何的发展基本上体现了高等数学发展的所有特点。作者通过数与几何概念的演变,深刻地揭示数学作为一种文化现象,它的发展同时受到历史和社会实践的影响。作者首次引入人类学的方法而非专业数学的方法来研究数学的发生、发展和变化过程,得出了一些十分重要的结论,为理解
数学就是一个与不可能发生近距离冲突的故事,因为数学中的一切伟大发现都接近于不可能。有许多表面看来不可能的例子,它们对于数学而言很重要。 渴望不可能 是数学中取得的许多进步的源头。本书中的大多数例子:无理数、虚数、无穷远点、弯曲空间、理想,以及各种类型的无穷 这些概念初看起来是不可能的,因为我们的直觉无法领会它们,但它们在数学符号体系的帮助下是可以被精确理解的,而数学符号体系是对于我们的感官的一种技术延伸。 本书涉及看似不可能的艺术、文学、哲学和物理学,摆脱了对数学概念的狭隘解释,拓宽了学生的视野。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为 基础篇 和 提高篇 ,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为提高篇,分为三角形与四边形、相似、圆、勾股定理等四个章节。书中详细地证明了常见的几何定理,并指导读者通过这些定理掌握高效的解题方法,培养正确的几何思维。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
本书精选了近两百个中学生能够看懂的 无字证明 . 无字证明 一般是指仅用图形而无须语言解释就能不证自明的数学结论,其形式往往是一个或一组特定的图片,有时也配有少量的解释说明.本书的每个无字证明都是一个趣题,这些无字证明涵盖了中学数学的方方面面,是罕见的直观反映数学美和数学本质的阅读材料,可作为中学生的课外读物,也可作为本科和高职师范类专业的教材.在新的课程标准强调直观想象这一核心素养的背景下,本书可满足中学和大学数学教师对教学素材的需求.