《几何原本》成书于公元前300年左右,全书13卷,是古希腊数学家欧几里得的一部不朽之作。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。《几何原本》自问世之日起,在长达2000多年的时间里,历经多次翻译和修订,自1482年首个印刷本出版,至今已有1000多种不同版本。 欧几里得建立了定义和公理,并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,并系统地总结了泰勒斯、毕达哥拉斯及智者学派等前代学者在实践和思考中获得的几何知识,集整个古希腊数学的成果与精神于一身。对人们理性推演能力的影响,即对人的科学思想产生了深刻且巨大的影响。
概率论是数学学科里很基础、很年轻、应用很广泛的一门学科,它不仅和我们日常生活息息相关,更是当今大火的大数据和人工智能技术的基础。不学概率论,就没法看懂前沿科技,没法理解现实世界,更没法预知和抓住未来。 作者通过生活中的案例,从通识的视角,带读者学习正态分布、幂律分布、大数定律、贝叶斯计算、方差和期望,让这些内容不再是高深莫测的数学概念,而是你能运用于自己决策的数学工具。 只要会四则运算,你就能够通过这本书学会概率论的相关概念,培养概率论思维,并将其应用于日常生活中,提升决策能力。
本书以抛物型方程、双曲型方程和椭圆型方程为基本模型,系统地阐述有 限差分方法的基础理论和主要格式。在详细介绍每个格式的时候,一些重要的 数值设计思想和理论分析技术得到详尽的讨论,有限差分方法同其他数值方法 的联系与区别也得到简要的论述。本书既注重理论的严谨性,也关注算法的实 现细节;内容既注重历史的发展轨迹,也关注最新的研究进展。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为 基础篇 和 提高篇 ,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为基础篇,分为平面几何基础、立体几何基础和打开证明之门三个章节。本书较为重视几何语言,在进入具体图形的学习之前,用大量篇幅详细讲解了定义、命题、条件、结论、公理、定理、性质等基本概念,有助于读者区分理解。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
我们将在第一章介绍关于纽结与链环的基本概念,然 后在第二章用上面提到的初等讲法来介绍琼斯多项式,并在第三章用它来证明泰特关于交错纽结的猜测.这是本书的一条主线,这条主线可以叫作绳圈的拓扑学.
全书共分为八章.第一章介绍与椭圆曲线有关的不定方程的知识,第二章介绍椭圆曲线的历史起源,第三章介绍椭圆曲线的重要性质,第四章介绍与椭圆曲线理论有关的一个极为重要的猜想,即Birch和Swinnerton-Dyer猜想(简称为BSD猜想),第五章介绍椭圆曲线在证明费马大定理中的应用,第六章介绍椭圆曲线在质性判定中的应用,第七章介绍椭圆曲线在整数分解中的应用,第八章介绍椭圆曲线在现代公钥密码体制中的应用.
从力学、物理学、天文学,直到化学、生物学、经济学与工程技术,无不用到数学 但提起数学,不少人仍觉得头痛,难以入门,甚至望而生畏。我以为要克服这个鸿沟还是有可能的 如果知道讨论对象的具体背景,则有可能掌握其实质 若停留在初等数学水平上,哪怕做了很多难题,似亦不会有助于对近代数学的了解。这就促使我们设想出一套 走向数学 小丛书,其中每本小册子尽量用深入浅出的语言来讲述数学的某一问题或方面,使工程技术人员、非数学专业的大学生,甚至具有中学数学水平的人,亦能懂得书中全部或部分含义与内容。这对提高我国人民的数学修养与水平,可能会起些作用。
《数学的力量》是美国加州地区*受欢迎的数学教师、 诗意数学 和普林斯顿高等研究院的资深学者以友好快乐的方式为你带来的数学之旅。在本书中,数学家斯特恩揭示了那些看上去晦涩难懂的数学研究和发现是如何改变我们理解这个世界的过程。斯特恩讲述了数学思想家如何发现宇宙中*根本观点的故事,从量子力学、时空理论、混沌理论、复杂系统的运转方式到 完美 民主的不可能性在本书中均有涉及。本书融理论与实际于一体,解释了销售人员规划行程的*方式,研究了为什么我们的某些想法中竟然包含了数字 ;或者更关键的是,回答了这个世界上*难的问题:为什么修理厂从来都不能按时修好你的车。
这是作者继《星际迷航记》之后,又一本引人入胜的几何学通俗读物。书中借由欧几里得、笛卡儿、高斯、爱因斯坦与威腾等的故事,来说明人类理解自身所处时空的五次革命性几何学发展历程。 欧几里得的《几何原本》开启了人类探究几何学的一扇窗,并引进了抽象化逻辑思维证明。这是几何学*次革命性的发展。 几何学第二次革命性的发展是由笛卡儿解析几何所开启的。坐标系统的引进可说是西方近代科学发展的重要里程碑,它巧妙地结合了几何图形与代数运算,展现了图表的魅力。 高斯与黎曼等人开启了非欧几何学的大们,也开始理解到空间是可以弯曲的。代表了几何学的第三次革命。 爱因斯坦提出狭义及广义相对论,这是几何学第四次革命性的发展,也是人类有史以来,对时间、空间、质能与引力等基本观念所提出的*震撼性的思想革命。
在《巧合》一书中,数学家约瑟夫 马祖尔带领我们走进貌似不可能发生的事件,风趣幽默地向我们解释了生活中的惊喜瞬间。他结合大千世界中离奇而真实的巧合故事,向我们阐释了概率的概念。你觉得你们班上有同学与你同一天生日的可能性大吗?如何让陪审团相信凶案现场找到的DNA并不能证明该DNA的主人曾出现在案发现场? 正如马祖尔所说,如果事情有可能发生,不论其可能性多么小,它必定会在某个时候发生。 如果您好奇发生在生活中的小小决定*终将如何导致离奇事件的发生,这本书必将是您的*。作为数学迷和故事迷的书目,《巧合》有助于我们了解偶然与必然的实质。
本书详细论述了用向量法解决常见几何问题的方法,特别是基于向量相加的首尾衔接规则的回路法。指出了选择回路的诀窍,用大量的例题展示回路法解题的简洁明快风格;分析了常见资料中同类题目解法烦琐的原因;提出了改进向量解题教学的见解。全书共16章,从向量的基本概念和运算法则入手,由易至难,以简御繁,不仅列出向量法解题要领,还论及向量法与复数法、解析法、质点法等的联系。
本书是数学物理方法课程的辅助材料。全书分复变函数、数学物理方程、特殊函数三篇,共十六章,每章都包括基本要求、内容提要、复习思考题、例题分析四部分。对相应的要点、内容进行概述,再提供,定数量的复习和思考题,最后对,些典型例题分类进行分析和详细解答。附有四份模拟试题及解答,供读者检验自己对知识的掌握情况。本书强调基本概念和方法的理解和掌握,适合于大学物理类本科生参考。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为 基础篇 和 提高篇 ,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为提高篇,分为三角形与四边形、相似、圆、勾股定理等四个章节。书中详细地证明了常见的几何定理,并指导读者通过这些定理掌握高效的解题方法,培养正确的几何思维。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
数字1到9有各种惊人的特性。例如,要洗几次扑克牌才能洗匀?为什么所有的井盖都是圆的?妈妈如何能分辨出孩子的声音?你知道怎样识别伪造的数据吗?所有人之间真的只隔着6个人吗?只用4种颜色怎样确保地图上任何相邻区域都不会颜色一样?在《数字乾坤》中,马克 钱伯兰将带领读者领略数字的迷人之处,了解它们的历史、应用以及与数论、几何、混沌、数值分析和数学物理等多个数学领域的关联。 本书适合中学生、大学生、数学专家和数学爱好者,读者可以从各种角度品味数字的迷人之处。
本书系统地介绍了非线性**化问题的有关理论与方法,主要包括一些传统理论与经典算法,如优化问题的**性理论,无约束优化问题的线搜索方法、共轭梯度法、拟牛顿方法,约束优化问题的可行方法、罚函数方法和SQP方法等,同时也吸收了新近发展成熟并得到广泛应用的成果,如信赖域方法、投影方法等。
本书从第2章开始逐步引入群的概念,并通过众多例子阐述群的基本性质。第3章介绍群在集上的作用,也用了大量例子说明一个重要的公式,这个公式可以说是波利亚计数定理的前奏。第4章引入权的概念,把前一章的思想推广,本书的主角 波利亚计数定理--也就登场了。第5章介绍这条定理的一项重要应用,是化学上同分异构体的计数问题,在叙述过程中同时介绍了母函数的概念。最后加了一个附录,叙述群这个概念怎样从古典代数的解方程问题产生,希望通过了解前人的业绩提高读者的学习兴趣。
李乔、李雨生所著的《拉姆塞理论 入门和故事》为其中一册,主要介绍了拉姆塞定理、几个经典定理、图的拉姆塞理论、欧氏拉姆塞理论及拉姆塞理论的一些进展。
本书分为6章,深入浅出,介绍的都为数学中很重要的问题。第一章介绍了基本知识,第二章介绍了保角变换,第三章介绍了法瑞序列与福特圆,第四章介绍了几何作图,第五章介绍了代数方程式的根,第六章介绍了整函数与毕卡小定理。