本书共分五个部分,十四个章节,是论述群、群表示论、李群、李 代数及其应用的一本入门读物. 第一部分详述了集合,集合之间的映射,以及群的一些基本理论,如等价与分类、拉格朗日定理,以及重新排列定理等. 第二部分具体讨论了一些群,如点群、对称群、群 GL ( n , K )及 其子群,着重论述了群 O ( 3)及其子群,为了运用,又用群论方法 证明了只有五种正多面体. 第三部分,阐明了由数系扩张形成的环、域、代数等代数系,并详细地讨论了向量空间中的一系列重要空间,如商空间、对偶空间、欧几里得空间和酉空间. 第四部分, 全面且系统地阐述了有限群的表示论,并研究了四元数与三维空间的转动.从时空的均匀性和对称性得出惯性系之间的洛伦兹变换,以及将对称性与守恒量联系起来的诺特定理. 第五部分,定义了李群,引出李代数,并讨论了它们在角动量理论 及基本粒子模型中
本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
每年都会有来自全球各地学习数学的学生和教师聚集在 奇妙的数学 暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年 奇解题训学 暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题及复杂的数学思想,但所有的问题都可以用初等的技术来解决,当然,需要以巧妙的方式将这些技术结合起来.本书可作为准备参加数学竞赛的初高中生以及想扩大数学视野的读者的参考资料.
本书系统地阐述了以状态空间方法为主的线性系统的时间域理论。全书共12章:第1章介绍与本书密切相关的一些数学基础知识;第2章介绍线性系统的数学描述;第3-5章阐述线性系统的分析理论,分别介绍线性系统的运动分析、能控性和能观性分析以及稳定性分析;第6-10章阐述线性系统的设计理论,分别介绍线性系统的极点配置和特征结构配置、镇定与渐近跟踪、线性二次型最优控制、解耦控制、状态观测器等设计问题;第11章概括性地介绍离散线性系统理论;第12章介绍鲁棒性的概念和几个基本的鲁棒控制问题。
. 本书针对大数据决策理论中涉及的安全可靠风险问题,以及可靠性与精确性的制约折中优化的问题,将研究的重点主要集中于基于Bayesian统计推断的粒子滤波算法的研究和应用,在论述粒子滤波算法的同时,主要融入了作者新的研究思想,即点估计观测值 先验概率,同时将多尺度的概念融入粒子滤波中,形成了具有多尺度粒子滤波的算法,利用不同粗细尺度对动态系统状态空间中的一条马尔可夫链进行交替耦合采样,借助于传递和更新状态信息及参数信息来搜索状态和参数的最大联合后验分布似然函数。细尺度的重要采样能保持精度,粗尺度的重要采样能提高运算效率,粗细尺度交替耦合采样则能有效抑制粒子的退化现象。本书为深度学习人工智能并深入研究奠定坚实的理论基础。 本书适合对大数据、统计信号处理、数字孪生系统故障传播根因诊断以及人工智
本书按照《高等数学》 (同济七版)章节顺序,并 参照 制订的 考研数 学考试大纲 和中国数学会 制定的 中国大学生数学竞 赛大纲 编写,包括十二个 章节的同步检测以及上册( 前七章)与下册(后五章) 的综合检测,共计十四套试 卷,每套试卷又含ABC三份 检测试卷,其中,A卷是基 本内容难度,夯实基础;B 卷是学校考试难度,强化训 练;C卷是考研竞赛难度, 拓展提升,对于试卷中的每 一道题目,均有配有详细的 解答过程。 本书内容丰富、题型多 样、解析专业,可作为理工 科大学一年级学生学习高等 数学的配套资料,同时还可 以作为准备复习考研和参加 大学数学竞赛的参考书及其 相关教师的参考资料。
本书旨在引进与诠释俄罗斯著名语言学家、语言哲学家、符号学家IO.C.斯捷潘诺夫的符号学思想,为我国符号学研究注入新鲜血液。事实上,IO.C.斯捷潘诺夫的符号学思想在我国学界早有涉猎,只是鲜有系统梳理其思想脉络,凝练其理论精要者。然而,只言片语难以穷尽这座丰厚的符号学思想宝库,也无法为我国符号学学理体系建设供给有效养料。因此,本书尝试结合宏观与微观视角,分别着眼IO.C.斯捷潘诺夫的普通符号学和观念符号学思想,寻求普通和分支符号学双向学理建构的经验借鉴,为优秀理论本土化工作夯实基础。
本书共分十二章,每章又分若干节,在章节设置上和同济大学六版高等数学教材基本一致,涉及的内容涵盖了高等数学的全部主题。在本书中每章除最后一节外每节包括两大部分内容:知识要点:简要对每节涉及的基本概念
全书遵循高等教育规律,突出高等职业教育的特点,注重对学生数学素养和应用能力的培养,体现数学建模思想。全书分为上、下两册共10章,内容包括:函数、极限与连续、导数的应用、一元函数的积分学、微分方程、向量代数与空间解析几何、多元函数微积分和无穷级数等。教材每章后附有历史的回顾与评述,主要介绍数学发展史与相关数学大师。本书对于所涉及的若干定理、推论、命题等,既不追求详细的证明过程,又不失数学理论的严谨;注重将数学建模思想融入到教学中;结合数学软件,培养学生处理数据以及求解数学模型的能力。与本书配套的辅助教材有《高等数学练习册》、《高等数学学习指导》。
本书介绍了多元统计分析的方法和理论,以及R语言计算,涵盖了经典多元统计分析的全部内容,包括:矩阵运算知识、数据可视化与R语言、多元正态分布、多元正态总体的抽样分布、多元正态分布的参数估计、置信域和假设检验、线性回归模型、多元多重回归分析、主成分分析、因子分析、判别分析、聚类分析和典型相关分析等内容,以及R语言的应用。本书除了重点介绍各种多元统计分析的思想、方法和理论外,使用R语言进行计算和数据可视化也是本书的特色,对书中所有的多元统计分析方法和理论都给出了R语言程序和应用,有大量翔实的应用案例可供参考,并配有相当数量的习题可供练习。 本书取材新颖、内容丰富、阐述严谨、推导详尽、重点突出、思路清晰、深入浅出、富有启发性,便于教学与自学。
有限群理论是研究对称性的重要数学基础,在理论物理、量子化学、晶体学、计算机编码、量子通信、信息加密等领域有重要应用。《有限群构造新论》介绍了作者在有限群构造领域的主要研究成果。为了便于读者阅读,《有限群构造新论》详细介绍了有限群论的基本概念、基本定理及其证明,内容是自封的。主要内容为:群的基本知识,群的作用,有限幂零群与超可解群,阶为p2q2,pq3,p2q3,p3q3 的有限群的完全分类(这里p,q 是不同的素数)。《有限群构造新论》可以作为理工科专业高年级本科生、研究生参考用书,也可以作为自然科学工作者的参考读物。
本书是一本趣味横生地讲述形式逻辑主题的故事书,融合了众多读者喜闻乐见的逻辑谜题,以一种独特的方式来普及数理逻从 章到第十六章有大量的趣味谜题供读者思考,包括说谎和讲真话的逻辑、沉默的骑士和无赖等,循着本书生动活泼的语言,读者可以由浅入深地了解命题的真假和自指、推理的有效性、集合论语义学、无穷和保有效性以及形式系统的性质等逻辑学基础知识。同时,本书还提供了丰富的练习及答案,这些练习并不拘泥于符号的正确运用,而是重在让读者理解证明的构造过程。本书既可以作为普通读者走入逻辑学大门的科普书,也可以作为大学本科和研究生的补充教材。
邱法玉、宋金丽主编的《高等数学学习辅导与同 步练习(国家骨干高职院校基础课系列教材)》根据教 育部制定的《高职高专教育高等数学课程教学基本要 求》,以国家骨干高职高专办学方向和培养目标为指 导,兼顾各专业对高等数学知识和技能的基本需求编 写而成。 本书既从宏观上对各章知识点、重难点、内在联 系进行系统的梳理,又从微观上对重点题型、解法、 注意事项进行分门别类的总结与例题示范,有利于学 生对知识的掌握以及应用能力的提高。 本书与国家骨干高职院校系列教材《高等数学》 配套使用,一方面能做到对教材知识点的呼应、总结 与强化,另一方面题目类型全、覆盖面广,题目从基 本到综合,由易到难、循序渐进,充分注重基础知识 的巩固、基本方法和自学能力、解题能力、应用能力 以及分析问题、解决问题能力的训练
《高等数学复习纲要》为在校大学生复习应试及研究生报考提供了一份理清知识脉络的提纲,为复习提供线索,为应试传输信息,《高等数学复习纲要》分为:微积分(高等数学),线性代数,概率论与数理统计三个部分。 《高等数学复习纲要》可作为各类高等院校学生的学习参考书和教师的教学参考书以及科技人员的工作参考书,也可作为各类专业学生的考研复习资料。
针对当前高等数学教学的现状分析,《高等数学的教学改革策略研究》一书应需而生。本书主要围绕高等数学的教学思想改革策略研究、高等数学的教学内容改革策略研究、高等数学的教学主体改革策略研究、高等数学的教学目标改革策略研究、高等数学的教学方法改革策略研究、高等数学的教学模式改革策略研究、高等数学的教学评价改革策略研究、高等数学的教学实践改革策略研究等内容进行了阐述,以期通过本书的分析研究,能够对高等数学的教学改革有所助益。