本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
量子计算是一个多学科领域。 本书致力于利用一些 量子力学奇妙的方面扩大我们的计算视野。通过介绍面向计算机科学领域的量子计算, 本书将带领读者浏览这个引人入胜的尖端研究领域。本书以一种通俗易懂但又严谨的方式,采用了每个计算机科学的学者和学生都熟悉的方法和技术。读者无需具有任何高等数学或物理背景。前四章介绍的背景知识,包括复数,复向量空间,从经典计算到量子计算的飞跃, 和基础量子理论。在随后的七章,作者分别从计算机科学的特定角度来描述量子计算的不同方面,比如:计算机体系结构, 算法,编程语言,理论计算机科学,密码学,信息理论和硬件。本书为计算机科学专业的学生和研究人员提供循序渐进的示例,两百多个练习和相应的答案,以及应用量子计算思想的编程练习。
本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及最值,作图,轨迹,平面闭折线,圆的推广十个专题。对平面几何中的500余颗璀璨夺目的珍珠进行了系统地、全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果。 本书中的1500余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及近期新成果。 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设“竞赛数学”“中学几何研究”等课程的教学参考书。
本书系统地阐述了以状态空间方法为主的线性系统的时间域理论。全书共12章:第1章介绍与本书密切相关的一些数学基础知识;第2章介绍线性系统的数学描述;第3-5章阐述线性系统的分析理论,分别介绍线性系统的运动分析、能控性和能观性分析以及稳定性分析;第6-10章阐述线性系统的设计理论,分别介绍线性系统的极点配置和特征结构配置、镇定与渐近跟踪、线性二次型最优控制、解耦控制、状态观测器等设计问题;第11章概括性地介绍离散线性系统理论;第12章介绍鲁棒性的概念和几个基本的鲁棒控制问题。
本书针对大学高等数学下学期的课程内容——向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分、曲面积分以及无穷级数——精心设计了750道经典与创新题目,并给出了相应的解题思路。书中题型规划合理,覆盖题型全面,解题思路清晰,非常适合想要打牢高等数学基础,以及准备参加专升本、研究生考试的学生使用。
《高等数学典型例题分析》是以同济版《高等数学》(第七版)为蓝本编写的学习辅导书,全书共分11章,内容包括:一元函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、常微分方程及其应用、向量代数空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数,每章内容包括内容提要、例题、思考题三部分,内容提要给出相关的概念、定理和公式。例题注重对解题思想、解题方法的分析和总结,培养学生的数学思维,思考题帮助读者巩固、拓展所学数学知识。 《高等数学典型例题分析》例题典型,覆盖面广,解题方法清晰完整,解题思路分析透彻,归纳总结全面,《高等数学典型例题分析》可作为高等学校大学数学课程的教学参考书、习题课教材,以及考研复习用书,
“算两次”,是一种重要的数学方法,也称做富比尼原理。用两种方法计算同一个量,是一种行之有效的基本方法。 这本小册子,通过形形色色的例题来介绍“算两次”,读者一定能够举一反三,找到 多的应用。
本书筛选了近年来的各地高考圆锥曲线试题,内容上注重题型归类和方法总结,以便师生直接利用和进一步研究解题方法,凸显了“知识问题化”“题目典型化”“方法通俗化”的特点,并且把一些基本的、有价值的题目进行了推广,寻求通性、通法。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
朱开永、王升瑞主编的《高等数学(下)》是根据高等工程教育的办学定位和工程技术型人才培养的目标,参考“高等院校高等数学教学大纲与基本要求”,结合笔者多年教学实践经验编写而成。 本书分为上、下两册,此为下册,内容包含了常微分方程、无穷级数、向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分。每一节和每一章后的习题和自测题书中配有答案。本书附有多媒体课件。本书在编写过程中着重把握“以应用为主,够用为度”,注意强调学生基本分析问题和运算能力的培养,取材少而精,文字叙述通俗易懂,论述确切;条理清晰,循序渐进;重点突出、难点分散;例题较多,典型性强;深广度合适,非常便于教与学。 本书可作为高等院校(独立学院、民办高校、网络学院)理工科专业应用型人才培养的教材,也可以
《线性代数习题精选精解》 本书涵盖了线性代数的知识要点、典型习题、考研真题以及难度稍大的综合习题,汇集了线性代数的基本解题思路、方法和技巧,融入了编者多年讲授线性代数的经验和体会。相信本书会成为读者学习线性代数的良师益友。本书共分六章,每章分若干节,在章节划分和内容设置上与近期新版硕士研究生入学考试大纲接近一致。每章除很后一节外每节包括两大部分内容:知识要点:简要对每节涉及的基本概念、定理和公式进行了系统梳理; 基本题型:对每节常见的基本题型进行了归纳总结,便于学生理解、掌握,可作为学生学习线性代数课的同步练习或习题使用,有利于提高学生的解题能力和数学思维水平。每章很后一节是综合提高题型。这一节的题目综合性较强、有一定难度,特别是有相当一部分是考研真题。通过本节的学习可以提高
《高等数学(下册)/新核心理工基础教材》吸取其他高等数学教材精华部分,依照少学时高等数学教学的知识结构要求及特点,围绕教学大纲内容,强调教材的层次性、针对性,便于少学时高等数学教学,也方便学生自学,各章、节知识点后配有相应习题,并附习题答案。 《高等数学(下册)/新核心理工基础教材》分上、下两册。下册包括多元函数微积分,重积分,无穷级数和微分方程四部分内容。 《高等数学(下册)/新核心理工基础教材》可作为少学时高等数学的教学用书,也可供广大读者进行自学。
本书是为配合清华大学电子学教研组编,童诗白、华成英原著,华成英主编的《模拟电子技术基础(第六版)》的使用而编写的,对教材中的每一章均按“内容概要”“难点释疑”“例题精解”“习题解答”四个部分编写,提炼重点,解决难点,示范性地分析和解决问题。本书既可作为教师手册,又可作为学生的辅导教材,还可作为自学者的参考书。
本书分别从中国古代数学思想、益智游戏、企业管理、计算机科学、博弈论等角度出发,介绍了线性代数和矩阵理论中的相关概念和理论在上述领域的应用。通过阅读本书,读者对线性代数在实际问题中的应用会有更加直观的了解,有助于激发读者对线性代数的学习兴趣和学习热情。本书分为8章,涵盖的主要内容有线性方程组的计算、益智数字游戏中的矩阵、经营管理中的矩阵、矩阵与图片美化、计算机绘画中的矩阵、矩阵与密码设计、互联网中的矩阵、矩阵与博弈论。本书内容通俗易懂、生动有趣,特别适合中学生、大学生及各年龄层的数学爱好者作为线性代数入门读物使用。另外,本书也适合作为各类大中专院校的教学参考书使用。
本书主要介绍高等数学中300道经典习题的一题多解,这是作者在30多年教学过程中的积累和总结。书中的习题及其解法部分选自高等数学及数学分析类参考文献、国内外大学数学竞赛试题和研究生入学考试试题及其解答,部分源于作者多年的教学研究成果,其中有不少是作者编制的新题和给出的新颖解法,解法丰富多彩。每道习题均包括典型例题、特别提示及类题训练三个环节,供读者拓展解题思路、思考和练习之用,以加深对相关解题方法的理解和运用。全书例题与同类训练题总和达1500多道。习题的典型性与广泛性、解法的多样性与新颖性、解法的普适性与拓展性、类题的针对性及习题的海量性是本书的主要特色。
本书介绍了多元统计分析的方法和理论,以及R语言计算,涵盖了经典多元统计分析的全部内容,包括:矩阵运算知识、数据可视化与R语言、多元正态分布、多元正态总体的抽样分布、多元正态分布的参数估计、置信域和假设检验、线性回归模型、多元多重回归分析、主成分分析、因子分析、判别分析、聚类分析和典型相关分析等内容,以及R语言的应用。本书除了重点介绍各种多元统计分析的思想、方法和理论外,使用R语言进行计算和数据可视化也是本书的特色,对书中所有的多元统计分析方法和理论都给出了R语言程序和应用,有大量翔实的应用案例可供参考,并配有相当数量的习题可供练习。 本书取材新颖、内容丰富、阐述严谨、推导详尽、重点突出、思路清晰、深入浅出、富有启发性,便于教学与自学。
有限群理论是研究对称性的重要数学基础,在理论物理、量子化学、晶体学、计算机编码、量子通信、信息加密等领域有重要应用。《有限群构造新论》介绍了作者在有限群构造领域的主要研究成果。为了便于读者阅读,《有限群构造新论》详细介绍了有限群论的基本概念、基本定理及其证明,内容是自封的。主要内容为:群的基本知识,群的作用,有限幂零群与超可解群,阶为p2q2,pq3,p2q3,p3q3 的有限群的完全分类(这里p,q 是不同的素数)。《有限群构造新论》可以作为理工科专业高年级本科生、研究生参考用书,也可以作为自然科学工作者的参考读物。
本书是一本趣味横生地讲述形式逻辑主题的故事书,融合了众多读者喜闻乐见的逻辑谜题,以一种独特的方式来普及数理逻从 章到第十六章有大量的趣味谜题供读者思考,包括说谎和讲真话的逻辑、沉默的骑士和无赖等,循着本书生动活泼的语言,读者可以由浅入深地了解命题的真假和自指、推理的有效性、集合论语义学、无穷和保有效性以及形式系统的性质等逻辑学基础知识。同时,本书还提供了丰富的练习及答案,这些练习并不拘泥于符号的正确运用,而是重在让读者理解证明的构造过程。本书既可以作为普通读者走入逻辑学大门的科普书,也可以作为大学本科和研究生的补充教材。