本书结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值和数值线性代数等。为巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了matlab练习题和测试题。本书叙述简洁,通俗易懂,理论与应用相结合,适合作为高等院校本科生“线性代数”课程的教材,同时也可作为工程技术人员的参考书。
单壿所著的《初等数论的知识与问题》共分两编,编初等数论的知识,第二编100道数论问题及解答。编包括章数的整除性,第2章同余,第3章数论函数,第4章不定方程,第5章连分数以及习题答案与提示;第二编包括第6章100道数论问题,第7章解答;附录包括2009年国家集训队的几道试题及空间格点三角形的面积。 《初等数论的知识与问题》适合于数学奥林匹克竞赛选手和教练员,初、高等学校师生以及研究人员和数论爱好者。
《模糊理论基础(第2版)》系统地介绍了模糊集理论及其应用的基本原理与基本方法。全书共分15章,内容包括模糊集理论的三个基本概念——模糊集合、模糊关系、模糊隶属函数;模糊集理论的基本原理——分解定理、表现定理和扩张原理;模糊集理论的三个基本应用——模糊聚类分析、模糊模式识别和模糊综合评判;模糊集理论的热门专题——模糊决策理论、模糊逻辑系统、模糊测度理论。书中阐述的重要概念附有英文对照,便于读者对相关英文文献的检索;每章后附有小结,便于读者对研究成果的追踪;书后附有符号说明和名称索引,便于读者阅读方便;大量的参考文献便于读者进一步阅读。 《模糊理论基础(第2版)》可以作为大专院校高年级本科生、研究生的教材或教学参考书,也可以作为从事模糊集理论与应用研究的工程技术人员和广大教师的参考书。
本书内容包括三部分:集合论、图论、近世代数。全书共分十五章,讨论了集合及其运算、映射、关系、无穷集合及其基数、模糊集合论、图的基本概念、树和割集、连通度和匹配、平面图和图的着色、有向图、半群和幺半群、群、环和域、格、布尔代数。每节后配有难度不同的习题。 本书可用作高等学校计算机科学与技术/工程等专业的教材,也可供有关专业的科技人员参考。
全书共分两卷,涉及的面很广,可以说概括了1920—1940年代数学的主要成就,也包括了1940年以后代数学的新进展,是代数学的经典著作之一。本书是第二卷。这一卷可分成3个独立的章节组:2至14章讨论线性代数、代数和表示论;5至17章是理想理论;8至20章讨论赋值域、代数函数及拓扑代数。
本书结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值和数值线性代数等。为巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了matlab练习题和测试题。本书叙述简洁,通俗易懂,理论与应用相结合,适合作为高等院校本科生“线性代数”课程的教材,同时也可作为工程技术人员的参考书。
高等代数是数学学科中一门重要的基础课,也是数学专业硕士研究生入学考试必考科目。高等代数具有理论上的抽象性、逻辑推理的严密性和广泛的应用性。大多数学生在学习过程中感到高等代数抽象难懂,对基本概念以及定理结论在理解上感到困难,具体解题时缺乏思路,难以下手。为了帮助读者掌握高等代数的基本理论和基本方法,掌握并综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,我们根据张禾瑞、郝钢新编写的《高等代数》第四版(高等教育出版社出版)编写了本辅导教材。 本辅导教材由以下几部分组成: 导读:列出相应各章应掌握的知识点以及重点、难点内容。 知识点考点精要:列出相应各章的基本概念、重要定理和重要公式,突出必须掌握和理解的核心内容以及考点的核心知识。 习题全解:教材中课后习题数量大、
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思维以及应用与建模。全书取材广泛,除包括定义、定理的严密陈述外,还配备大量的实例和图表的说明、各种练习和题目以及丰富的历史资料和网站资源。第6版在前五版的基础上做了大量的改进,使其成为更有效的数学工具。 本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
本书共有4卷,作者是世界公认的分析学大师。这套4卷集的经典名著以广义函数论为框架,论述了与线性偏微分方程理论有关的经典分析和现代分析的核心内容。第2卷内容主要包括:微分方程解的存在性和近似性、微分方程解的内部正则性、柯西问题的混合边值问题、恒定强度的微分算子、散射理论、线性偏数方程的解析函数理论和卷积型方程等。
本书是一部数学问题集,全书分为方田(面积、分数计算)、粟米(比例) 、衰分(配分比例)、少广(开平方、立方)、商功(体积计算)、均输(复杂的配分比例)、盈不足(盈亏)、方程(线性方程组)、勾股(勾股计算及测量)等九章,共246问2O2术,故称“九章算术”。其内容涉及算术、代数、几何等诸多领域,并与实际生活紧密关联,充分体现了中国人的数学观和生活观。全书章与章之间、同章“术”与“术”之间、同“术”所驭算题之间按照由浅入深、由简而繁的顺序编排。 这是一部与现代数学的主流思想完全吻合的中国数学经典著作,一部最早却能体现现代宇宙学精神的书。它被历代数学家尊为“算经之首”的《九章算术》,是中国古代算法的扛鼎之作,与古希腊欧几里得的《几何原本》并列为途径方法大不相同的、东西辉映的世界两大数学体系的代表。本书是其白话译
本书论述有限域上各类典型矩阵在群作用下构作的结合方案,其内容主要包括有限域上的长方矩阵、交错矩阵、Hermite矩阵、对称矩阵和二次型构作的结合方案,导出各类结合方案的一般参数计算公式,讨论这些结合方案的本原性、对偶性、P多项式等基本性质以及自同构群。书中还特别论述了特征数为2时二次型结合方案的特征值及其聚合方案的对偶方案。该书可供各大专院校作为教材使用,也可供从事相关工作的人员作为参考用书使用。
高等数学、线性代数、中医药统计学,是中医药院校的数学课程。高等数学重在研究确定性现象的连续变化规律,研究的工具是极限,研究的内容是微积分、数学模型。中医药统计学重在研究性现象的统计规律,研究的工具是概率,研究的方法是由样本描述和推断总体的特征。线性代数则是研究确定性现象的系统变化规律,研究的工具是矩阵,研究的内容是矩阵理论,直接应用是线性方程组、投入产出分析、线性规划和非线性规划。随着科学技术的进步,特别是计算机技术的迅速发展,线性代数已经渗透到从自然科学技术到工农业生产建设,从经济活动到管理活动的各个领域。 传统的线性代数教学模式,是教师在黑板上演算,学生在纸上演算。本书是突破这种教学模式的一种尝试,它具有理论与实际、动脑与动手、教学与实验、教学与自学相结合的优点。理论
《数学四色问题证明》详细地介绍了四色问题的数学证明方法,即在证明了三次平面图形成定理、边二色回路定理和面二色通路定理的基础上,进而证明了四色问题成立。这些证明的思路和方法,对于启发人们数学思考的多样化和推动基础数学研究的发展是大有益处的。本书由时徐俊杰著。
本书通过实例介绍了常用的初级数学建模方法,包括预测预报方法(回归分析、信息时间传递、马尔可夫链、灰色系统、神经网络预测)、关联分析方法(简单相关系数、偏相关系数、通径分析、典型相关分析、主成分分析、斯皮尔曼等级相关系数、独立性检验)、综合评价与决策方法(模糊综合评价、主成分综合评价、因子分析、层次分析法、灰色关联、方差分析)、分类与判别方法(模糊聚类分析、系统聚类、动态聚类、模糊模式识别、贝叶斯判别)以及数学规划方法等。全书注重数学建模思想介绍,重视数学软件MATLAB、LING在实际中的应用。全书案例丰富,通俗易懂,便于自学。
《矩阵理论/科学版研究生教学丛书(新版链接为:http://product..com/product.aspx?product_id=20704032)》共分12章,主要介绍线性空间与线性变换、内积空间与等距变换、特征值与特征向量、λ-矩阵与Jordan标准形、特殊矩阵、矩阵分析初步、矩阵函数的应用、矩阵的分解、非负矩阵、矩阵的广义逆、Kronecker积. 《矩阵理论/科学版研究生教学丛书(新版链接为:http://product..com/product.aspx?product_id=20704032)》适合工科研究生及从事工程的专业技术人员.
本书是《组合数学(第4版)》的修订版,全书共分7章,分别是排列与组合、递推关系与母函数、容斥原理与鸽巢原理、Burnside引理与Pólya定理、区组设计、编码简介和组合算法简介.丰富的实例及理论和实际相结合是本书一大特点,有利于对问题的深入理解.本书是计算机相关专业本科生和研究生的教学用书,也可作为数学专业师生的教学参考书.本书封面贴有清华大学出版社防伪标签,无标签者不得销售。
高等代数是数学专业的重要基础课,它对培养学生的抽象思维能力、逻辑推理能力,以及后续课程的学习起着非常重要的作用,也是数学系硕士研究生入学考试的一门必考科目。高等代数主要包括多项式和线性代数两部分内容。线性代数又是工学及经济学科学生的基础课程,在硕士研究生入学统一考试数学试题中占有相当大的比例且是必考内容之一。这门课程的特点是内容比较抽象,概念、定理比较多,前后联系紧密,环环相扣,相互渗透。为了帮助考生加深对课程内容的理解,掌握解题的方法及技巧,提高应试能力,我们根据长期从事高等代数教学的经验及讲授考研辅导班的教案,编著成本书。