有限p群是有限群最基本和最重要的分支之一。从群论诞生起,特别是从sylow1872年发表的定理(sylow定理)起,p群就受到所有群论学者的关注,并且取得了很重要的研究成果。我国对于p群的研究开始于20世纪30年代华罗庚和段学复先生组织的p群讨论班,他们对于p群的算术结构作了系统的研究,得到了若干重要的成果。 作者徐明曜多年来从事有限p群的研究,并多次在北京大学、山西师范大学为研究生开设有限p群课程;作者曲海鹏近年来也做了大量p群的研究和教学工作。本书就是在二位作者编写的讲义基础上经过补充、整理而成的,是一部研究生教材。全书共分12章。内容包括:群论基本概念复习,p群的初等事实,某些重要的换位子公式,p交换p群,正则p群,亚循环p群,子群结构、交换子群、正规子群,极大类p群,p群的幂结构,有限p群的一般分类问题,有限幂
决策环境中存在大量的复杂不确定性信息,人类的“知识有限”、“理性有限”,专家的经验与判断是解决非结构性、定性以及定性与定量结合等决策问题的一种有效的方法。在不确定模糊判断矩阵决策论域下,以一致性理论为理论研究基础,利用信息融合方法集成不性、不确定性和部分真实性的判断信息,利用软计算、优化技术得到易处理、低求解成本和融合实际的“满意”或“近似”解,是本书主要探讨的内容。 本书可作为高等院校、科研院所从事管理科学、信息科学、系统工程和运筹学等专业研究人员的参考书,也可作为经济与管理、数学与系统科学等专业高年级研究生的参考教材,还可作为政府决策部门、企业管理、工程技术人员的参考书。
本书是两卷本计数组合学基础导论中的卷,适用于研究生和数学研究人员。本书主要介绍生成函数的理论及其应用,生成函数是计数组合学中的基本工具。 本书共分为四章,分别介绍了计数(适合高年级的本科生),筛法(包括容斥原理),偏序集以及有理生成函数。本书提供了大量的习题,并几乎都给出了解答,它们不仅是对本书正文的极大扩充,而且对书中没有直接涉及的许多领域提供了入门途径。本书的选材覆盖了计数组合学中应用最为广泛以及与其它数学领域关联最为密切的部分。 中文版根据英文修订版译出,包括内容的更新和习题的补充。 对于希望把组合数学应用到工作中的研究生和数学工作者来说,本书是一本著作。
组合数学是研究离散结构和离散对象关系模式的数学分支,是一门在理论和应用上涉及范围很广泛的学科。本书的内容十分丰富,讨论的问题涵盖组合数学所涉及的绝大部分领域,堪称“组合数学的百科全书”。作者的阐述深入浅出,使得高深的内容简明易懂,便于广大读者阅读。本书被美国哥伦比亚大学、斯坦福大学、加州理工学院等许多国外大学采纲为教材,在科学技术界读者中也很受推崇。
本书概要介绍半个世纪以来由数字通信的可靠性要求所建立和不断发展的纠错码数学理论。书中不涉及纠错技术和工程具体实现问题,但也介绍了一些纠错译码算法。 本书适用于代数专业的研究生和具有较好代数基础的高年级本科生。书中所讲述的知识和方法对于研究信息科学与计算机科学中许多其他问题也会有所帮助。
《模糊理论基础(第2版)》系统地介绍了模糊集理论及其应用的基本原理与基本方法。全书共分15章,内容包括模糊集理论的三个基本概念——模糊集合、模糊关系、模糊隶属函数;模糊集理论的基本原理——分解定理、表现定理和扩张原理;模糊集理论的三个基本应用——模糊聚类分析、模糊模式识别和模糊综合评判;模糊集理论的热门专题——模糊决策理论、模糊逻辑系统、模糊测度理论。书中阐述的重要概念附有英文对照,便于读者对相关英文文献的检索;每章后附有小结,便于读者对研究成果的追踪;书后附有符号说明和名称索引,便于读者阅读方便;大量的参考文献便于读者进一步阅读。 《模糊理论基础(第2版)》可以作为大专院校高年级本科生、研究生的教材或教学参考书,也可以作为从事模糊集理论与应用研究的工程技术人员和广大教师的参考书。
RichardA.Brualdi所著的《组合数学(原书第5版)》系统地阐述组合数学基础、理论和方法,侧重于组合数学的概念和思想,论述了鸽巢原理、排列与组合、二项式系数、容斥原理及应用、递推关系和生成函数、特殊计数序列、二分图中的匹配、组合设计、图论、有向图及网络、Polya计数法等。此外,各章均包含大量练习题,并在书末给出了参考答案与提示。《组合数学(原书第5版)》适合作为高等院校相关专业组合数学课程的教材。
本书是一本介绍代数发展历史的科学普及读物,作者以轻松诙谐的笔触将代数几千年来的重大事件和重要人物展现出来,让读者从一个侧面对整个数学的发展有总体的认识。本书适合中学生至等各层次的数学爱好者阅读,也是研究数学史极有价值的参考读物。
本书是一部数学问题集,全书分为方田(面积、分数计算)、粟米(比例) 、衰分(配分比例)、少广(开平方、立方)、商功(体积计算)、均输(复杂的配分比例)、盈不足(盈亏)、方程(线性方程组)、勾股(勾股计算及测量)等九章,共246问2O2术,故称“九章算术”。其内容涉及算术、代数、几何等诸多领域,并与实际生活紧密关联,充分体现了中国人的数学观和生活观。全书章与章之间、同章“术”与“术”之间、同“术”所驭算题之间按照由浅入深、由简而繁的顺序编排。 这是一部与现代数学的主流思想完全吻合的中国数学经典著作,一部最早却能体现现代宇宙学精神的书。它被历代数学家尊为“算经之首”的《九章算术》,是中国古代算法的扛鼎之作,与古希腊欧几里得的《几何原本》并列为途径方法大不相同的、东西辉映的世界两大数学体系的代表。本书是其白话
本书专门研究具有广泛应用背景的非负矩阵、M矩阵、H矩阵等特殊矩阵类及其应用。全书共分七章,详细阐述了几类特殊矩阵的性质和判定方法,内容包括非负矩阵的Perron—Frobius理论和逆特征值问题、M矩阵和H矩阵的结构、性质和判定方法、逆M矩阵的组合性质、矩阵和稳定矩阵的基本性质,以及特殊矩阵类的非线性推广和若干应用。 本书可作为高等院校基础数学、计算数学和应用数学专业高年级本科生和研究生的教学用书,也可作为相关专业教学、科研和技术人员的参考用书。
本书以经典理论与现代应用相结合的方式介绍了初等数论的基本概念和方法,内容包括整除、同余、二次剩余、原根以及整数的阶的讨论和计算。此外,书中附有60多位对数论有贡献的数学家的传略。本书内容丰富,趣味性强,条理清晰,既可以作为高等院校计算机及相关专业的数论教材,也可以作为对数论和密码学感兴趣的读者的初级读物。本书是数论课程的经典教材,自出版以来,深受读者好评,被美国加州大学伯克利分校,伊利诺伊大学,得克萨斯大学等数百所名校采用。经典理论与现代应用的结合是本书的一大特色。第5版通过增强实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。与时俱进是本书的又一大特色,为使本版与的研究成果及近几年的新理论优美结合,作者花费了大量心血。本书还以别出心裁的习题