并发系统常常在结构上展示出对称性,这种对称结构一般来说具有相同或相近的性质,本书讨论了并发系统的进程代数语言及其事件结构模型中的对称性、对称约简、对称约简对动作细化的影响以及基于束动作变迁的偏序约简与应用,力图在结构层次上建立对建模语言和模型进行约简及细化的基本理论和方法,为高效机械化设计和分析并发系统服务。 本书可以供高年级大学生、研究生、教师和科研人员作为了解数学机械化基本思想与方法在形式化并发系统设计与分析中应用的参考书。
本书系统地给出Wishart统计分布理论的一些基本结果,并在此基础上介绍一些现代发展结果。主要内容有:作为预备介绍常用的矩阵代数知识。引进微分外积形式工具,并介绍Haar不变测度和矩阵积分。讨论多元正态和矩阵正态分布,并由此引进中心Wishart分布,讨论它的性质、矩量、Bartlett分解和特征值的联合分布,并介绍逆Wishart分布和矩阵R分布;通过带状多项式矩阵变量超几何函数引进非中心Wishart分布,讨论它的性质和特征值的分布;将Wishart分布理论推广到球对称矩阵分布,讨论与其相关的矩阵t和F分布;一般地讨论正态矩阵二次型的分布,并给出其密度的级数表达形式。 本书可作为概率统计、生物统计和计量经济等相关学科专业的高年级本科生、硕士或博士研究生教材,也可作为高校教师、研究人员和科技人员的科研参考书。
本书系统收录了作者从1994年至2010年在系统稳定性方面的研究成果,全书分四部分。部分介绍了KAM方法和Hamilton系统的一些基本概念,包括KAM迭代、测度估计,Poisson括弧等基本概念;第二部分,系统介绍近可积映射的KAM稳定性,包括近扭转映射的不变环面,近可积辛映射的KAM理论和Nekhoroshev理论等;第三部分建立广义Hamilton系统的KAM稳定性,包括Kolmogorov型定理、Atropic不变环面、有效稳定性等;第四部分介绍KAM方法的应用。
This book provides an introduction to abstract algebraic geometry using the methods of schemes and cohomology. The main objects of study are algebraic varieties in an affine or projective space over an algebraically closed field; these are introduced in Chapter I, to establish a number of basic concepts and examples. Then the methods of schemes and cohomology are developed in Chapters II and III, with emphasis on applications rather than excessive generality. The last two chapters of the book (IV and V) use these methods to study topics in the classical theory of algebraic curves and surfaces.
The "abstract,""formal"or"axiomatic"direction,to which the fresh impetus in algebra is euc ,haw led ,haw led to a numbe of new formulations of ideas,insight into new interrelations,and far-reaching results results,especially in group theory ,field theory,valuation theory, ideal theory,and the theory of hyperplex numbers.The principal objective of this reason ,genreral concepts and methods stand in the foregorund ,particular results which properly belong to classical algebra must also be give appropriate consideration within the framrwork of the modern development.
《矩阵迭代分析(第二版)》的作者现任英国肯特大学教授,多种国际杂志主编或编委。本书版1962年由Prentice Hall出版,是矩阵迭代分析方面的经典教材。此次修订,有些章节吸收了新的研究成果,如弱正则分裂方面的结果;有些章节则增添了新的内容,引述了最近的定理,更新了参考文献,读者从中可以了解一些的发展方向。此次修订,新的章节的内容基本上都是自含的,并添加了习题。原版主要基于线性代数方法,而修订版强调借助其他领域的工具,如逼近论和共型映射理论,得到更加新颖的结果。本书尤其适合从事数值分析的科研人员和研究生阅读。
西格尔所著的《数》系统地介绍了数理论,内容分四章:章介绍了数论的一些古典结果;第二章专门讲述适合于齐次线性微分方程组的某些函数数值的代数无关性;第三章中证明了数ab的性,即著名的Hilbert第七问题;最后,第四章介绍了Schneider关于椭圆函数的算术性质方面的一些研究结果。 《数》适合于大学、中学师生及数学爱好者。
Almost two decades have passed since the appearance of those graph theory texts that still set the agenda for most introductory courses taught today. The canon created by those books has helped to identify some main fields of study and research, and will doubtless continue to influence the development of the discipline for some time to e. Yet much has happened in those 20 years, in graph theory no less than elsewhere: deep new theorems have been found, seemingly disparate methods and results have bee interrelated, entire new branches have arisen. To name just a few such developments, one may think of how the new notion of list colouring haridged the gulf between invuriants such as average degree and chromatic number, how probabilistic methods and the regularity lemma have pervaded extremai graph theory and Ramsey theory, or how the entirely new field of graph minors and tree-depositions harought standard methods of surface topology to bear on long-standing algorithmic graph problems.
本书概要介绍半个世纪以来由数字通信的可靠性要求所建立和不断发展的纠错码数学理论。书中不涉及纠错技术和工程具体实现问题,但也介绍了一些纠错译码算法。 本书适用于代数专业的研究生和具有较好代数基础的高年级本科生。书中所讲述的知识和方法对于研究信息科学与计算机科学中许多其他问题也会有所帮助。
作者在详细全面地介绍了平面代数理论,并从两方面分析了这个数学的经典研究领域:其在古希腊数学研究中的显著地位;它依然是当代数学研究领域里的灵感激发者和主题。同时该书也为我们综合理解和研究当代关于奇异性的研究打下了基础。章中展示了许多拥有优美几何体的特殊曲线——丰富的插图是该书的一大特点,还介绍了投影几何学(在复数域上)。第二章中对Bezout定理进行了简单的证明并详细论述了三次曲线。
并发系统常常在结构上展示出对称性,这种对称结构一般来说具有相同或相近的性质,本书讨论了并发系统的进程代数语言及其事件结构模型中的对称性、对称约简、对称约简对动作细化的影响以及基于束动作变迁的偏序约简与应用,力图在结构层次上建立对建模语言和模型进行约简及细化的基本理论和方法,为高效机械化设计和分析并发系统服务。 本书可以供高年级大学生、研究生、教师和科研人员作为了解数学机械化基本思想与方法在形式化并发系统设计与分析中应用的参考书。
The "abstract,""formal"or"axiomatic"direction,to which the fresh impetus in algebra is euc ,haw led ,haw led to a numbe of new formulations of ideas,insight into new interrelations,and far-reaching results results,especially in group theory ,field theory,valuation theory, ideal theory,and the theory of hyperplex numbers.The principal objective of this reason ,genreral concepts and methods stand in the foregorund ,particular results which properly belong to classical algebra must also be give appropriate consideration within the framrwork of the modern development.
The "abstract,""formal"or"axiomatic"direction,to which the fresh impetus in algebra is euc ,haw led ,haw led to a numbe of new formulations of ideas,insight into new interrelations,and far-reaching results results,especially in group theory ,field theory,valuation theory, ideal theory,and the theory of hyperplex numbers.The principal objective of this reason ,genreral concepts and methods stand in the foregorund ,particular results which properly belong to classical algebra must also be give appropriate consideration within the framrwork of the modern development.