《抽象代数习题精选精解》章是抽象代数的基本概念。第二章是群论,内容包括循环群、置换群、不变子群、商群、群同态、群在集合上的作用、Sylow定理、群的直积等。第三章是环和域,内容包括整环、除环、理想、商环、环同态、素理想与极大理想等。第四章是整环的因子分解。第五章是域,包括素域、单扩域、代数扩域、有限域等。 我们在《抽象代数习题精选精解》各节的部分给出了相关内容的定义和重要结论,这些是相关内容的重点和难点;第二部分给出了大量的习题,并将习题按照知识点分类,难易搭配,以便帮助读者更好地掌握相关知识以及更好地掌握解题技巧。我们对《抽象代数习题精选精解》的习题解答努力做到详尽,希望能够为读者学习这门课程提供帮助。
本书是大学本科一学期周3学时的“抽象代数”课的教材,主要内容是群、环、域的基础知识。本书的特点是简明实用,注重讲清抽象代数的思想和精神。本书还配备了适当数量的习题,并分基本题与补充题两个层次设置,便干学生自学和教师选题。 本书可作为综合性大学、一般院校或师范院校的“抽象代数”课教材,特别适合周3学时的教学使用。
《高等代数习题解(上)(修订版)》从多项式、行列式、线性议程组、矩阵等方面,精选了618道典型性较强的习题,做了全面详细的解答,并注意了一题多解。每节习题之前都对本节主要定义、定理和理要结论作了简要的概述。内容丰富,重点突出,解答明确,尤其便于自学。可供高等院校师生、中学教师和广大数学爱好者以及有志报考研究生的人员学习参考。
本书分“解三次和四次多项式方程的故事”、“向五次方程进军”、“一些数学基础”、“扩域理论”、“尺规作图问题”、“两类重要的群与一类重要的扩域”、“伽罗瓦理论”及“伽罗瓦理论的应用”八个部分逐步展开,引导读者一步步去解决一系列重大的古典数学难题。
线性代数是理工类专业的一门重要基础课,也是硕士研究生入学考试的重点科目。同济大学数学系主编的《线性代数》是一套深受读者欢迎并多次获奖的优秀教材。为帮助读者学好线性代数,我们编写了《线性代数同步辅导》,该书与同济大学数学系主编的《线性代数》(第五版)完全配套,它汇集了编者几十年的丰富经验,将一些典型例题及解题方法与技巧融入书中,本书将会成为读者学习《线性代数》的良师益友。 该书章节的划分和内容设置与同济大学的《线性代数》(第六版)完全一致。本书由张天德、苗丽安主编,刘庆红、刘清华副主编。
本书按同济大学教学系编写的《线性代数》教材的内容及顺序同步阐述,全书共分六章,每章有五个部分,即基本要求概述及主要术语,基本内容部剖析,典型例题分析,自测题,自测题答案与提示,并配有两套综合练习题与两套考研试题及其详解。 本书的特点是从线性代数的基本思想方法入手按教学基本要求突出知识的重点与难点,给出了各章知识在课程中的作用与地位,分析各章内容的相互关系,并对各章内容进行剖析。典型例题分析注重强调知识点的具体应用、解题的思想方法,指出学生易忽略、混淆甚至错误的地方。本书部析理论的精髓,内容深入浅出,例题翔实并配有分析及多种解法,可作为在校大学生及考研学生的参考用书。
本书共分六章,每章分若干节,在章节划分和内容设置上与*版硕士研究生入学考试大纲完全一致。每章除后一节外每节包括两大部分内容:知识要点:简要对每节涉及的基本概念、定理和公式进行了系统梳理;基本题型:对每节常见的基本题型进行了归纳总结,便于学生理解、掌握,可作为学生学习线性代数课的同步练习或习题使用,有利于提高学生的解题能力和数学思维水平。 每章后一节是综合提高题型。这一节的题目综合性较强、有一定难度,有相当一部分是考研真题。通过本节的学习可以提高读者的应变能力、思维能力和分析问题、解决问题的能力,把握重点、了解考研动向、开拓视野。