本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,不仅包括由于数学分析的需要而产生的线性代数的论题,还广泛选择了其他相关学科如微分方程、*化、逼近理论、工程学和运筹学等有关的论题。本书主要内容有:特征值、特征向量和相似性、酉相似、schur三角化及其推论、正规矩阵、标准形和包括jordan标准形在内的各种分解、lu分解、qr分解和酉矩阵、hermite矩阵和复对称矩阵、向量范数和矩阵范数、特征值的估计和扰动、正定矩阵、非负矩阵。 本书逻辑清晰,结构严谨,既注重教学又注重应用。在每一章的开始,作者都介绍几个应用来引入本章的论题以激发学习兴趣。在章节末尾,作者还独具匠心地编排了许多具有探索性和启发性的习题,引导读者提高描述和解决数学问题的能力。本书是一本畅销的教材,对从事线性代数纯理论研究和应用研究的人
本书针对应用科学中的11个重要的非线性发展方程,介绍差分求解方法的**研究成果,包括微分方程问题解的守恒性和有界性分析、差分方法的建立、差分解的守恒性和有界性分析、差分解的存在性分析、差分解收敛性的证明、差分格式的求解等内容。建立的差分求解格式包括非线性差分格式和线性化差分格式。这11个非线性发展方程如下:Burgers方程、正则长波方程、Korteweg-deVries方程、Camassa-Holm方程、Schr.dinger方程、Kuramoto-Tsuzuki方程、Zakharov方程、Ginzburg-Landau方程、Cahn-Hilliard方程、外延增长模型方程和相场晶体模型方程。
本书分为上、下两册。上册讲述多项式、线性方程组、矩阵和行列式等代数理论,进而抽象出线性空间理论;下册讲述线性变换、Jordan标准形、内积空间和双线性函数和二次型等几何理论。本书在多项式部分强调类比的方法,在线性代数的代数部分强调初等交换的核心地位以及化一般为特殊的解决问题的基本方法,在线性代数的几何部分强调几何和代数的对应与联系。全书线索清晰,证明过程翔实,力求重现数学再发现过程,低起点而高落点,并对部分知识点进行拓展,每一章节后配有丰富的习题,以便学生巩固概念和开拓思路。 本书可作为普通高等学校数学类线性代数课程或者高等代数课程的教材,也可作为其他相关专业参考用书。
本书分为上、下两册。上册讲述多项式、线性方程组、矩阵和行列式等代数理论,进而抽象出线性空间理论;下册讲述线性变换、Jordan标准形、内积空间和双线性函数和二次型等几何理论。本书在多项式部分强调类比的方法,在线性代数的代数部分强调初等交换的核心地位以及化一般为特殊的解决问题的基本方法,在线性代数的几何部分强调几何和代数的对应与联系。全书线索清晰,证明过程翔实,力求重现数学再发现过程,低起点而高落点,并对部分知识点进行拓展,每一章节后配有丰富的习题,以便学生巩固概念和开拓思路。 本书可作为普通高等学校数学类线性代数课程或者高等代数课程的教材,也可作为其他相关专业参考用书。
本书面向数学专业核心基础课高等代数教学,全书对科学出版社出版、丘维声教授编写的《高等代数》一书作出了详细的题解和相关知识点的分析,全书补精选和补充了许多相应章节的相关探究性或知识点延伸的习题,从而增强读者对相应章节的理解。其中对某些问题的分析为读者提供了解决各种问题的方法。全书融汇了作者多年从事高等代数课程的教学感悟与经验,采用典型分类、多点强化、翻转解析、灵活点评等方法,帮助读者理解基本概念、熟悉基本理论、掌握基本方法,从而提高解题能力、培养创新思维。 本书叙述严谨、可读性强、题型丰富,可作为大学理科专业学习高等代数的辅导读物,也可作为报考研究生的复习参资料,也可供高等学校教师作为教学参考书。
本书特色:经典理论与现代应用相结合。通过丰富的实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。内容与时俱进。不仅融合了的研究成果和新的理论,而且还补充介绍了相关的人物传记和历史背景知识。习题安排别出心裁。书中提供两类由易到难、富有挑战的习题:一类是计算题,另一类是上机编程练习。这使得读者能够将数学理论与编程技巧实践联系起来。此外,本书在上一版的基础上对习题进行了大量更新和修订。
数作为产生自然数的原本形式,它已有上万年的历史。虽然有史以来,人们就已应用敷数这一计数方法,但在数学研究领域却完全忽略了“数计数”这种基本的数学形式,使之成为数学研究中的一项空白。在本书讨论的整个过程中,根据数这种原本形式表现出的性质与规律,创造出了“薛海明筛法”,从根本上改变了“古典筛法”以及现代数论中应用的一些新的筛法理论工具,并对素数的判别,合数的分解,求素数的分布个数,孪生素数的分布,哥德巴赫猜想等有关素数难题全部归纳为系列化讨论。它将系统地告诉我们,商数、余数、合数、素数、偶数、各种因子等多种不同形式的有序分布规律与各数之间的关系。这种全部运用系列化探讨自然数的方法,对数学的发展有着深远的意义,也是开启对敷数性质,规律研究的一部原创数学专著。
《线性发展方程的单参数半群》全面讲述了强连续线性算子的单参半群理论。《线性发展方程的单参数半群》的特点是在常微分和偏分方程算子、衰退方程和volterra方程和控制理论中广泛应用。而且,书中也强调了一些哲学动机和历史背景。《线性发展方程的单参数半群》适用于数学、控制专业的研究生和更高层次的科研人员。
线性规划是运筹学的一个分支,它是化问题领域中最简单、最基本和使用最广泛的方法,广泛应用于工农业、军事、交通运输、决策管理与规划、科学实验等领域。这本教材是从一门高级的本科生数学课程演变而来的。覆盖了线性规划的基本主题,同时包含许多高级主题。通过不同难易程度的习题,为学生提供逐步提高的机会,并使的学生完成更具挑战性的任务。本书特点:强调逻辑和应用建模,使得管理、经济和运筹学等非数学专业的学生能在各自的领域中学习使用线性规划。应用数学工具,但不依赖严密的数学研究进展,为数学专业的高年级学生提供进一步研究所需的理论。难易不同的习题为不同程度的学生提供具有挑战性的任务。附录介绍有关数学规划更深入的材料,为数学专业学生提供高级主题,为面向应用的学生提供已知方法的参考。论述建模问题的系
杜德利所著的《基础数论》对初等数论的大多数论题进行了介绍。推导了整数和同余式的基本性质,给出了费马定理和威尔逊定理的证明,介绍了几个数论函数以及丢番图方程和素数等知识,推出了重要的二次互反性定理。全书共收进了一千多道练习和习题,且练习插在文(和一些证明)中,习题则附在各章末尾。《基础数论》适用于高等学校数学类专业作为教材使用,也适用于对数学特别是数论知识感兴趣的读者使用。
本书结合大量应用和实例详细介绍线性代数的基本概念、基本定理与知识点,主要内容包括:矩阵与方程组、行列式、向量空间、线性变换、正交性、特征值、数值线性代数和标准型等.为帮助读者巩固所学的基本概念和基本定理,书中每一节后都配有练习题,并在每一章后提供了MATLAB练习题和测试题. br / 本书叙述简洁,通俗易懂,理论与应用相结合,适合作为高等院校本科生“线性代数”课程的教材,同时也可作为工程技术人员的参考书. br / br /
《数论:从同余的观点出发》依据作者多年数论教学心得和研究成果写成。从同余的定义和观点出发,前五章依次讲述整除的算法、同余的性质、同余式理论、平方剩余、原根和n次剩余,后两章是有关素数幂模和整数幂模的同余式,不在通常的初等数论范畴却伸手可触。本书的另一特点是,每节内容都有引人入胜的补充读物,借此拓宽读者的知识面和想象力。这些读物或讲述了某一数论问题的初步知识,如佩尔方程和丢番图数组、阿廷猜想和特殊指数和、椭圆曲线和同余数问题、自守形式和模形式;或介绍了整数理论的新问题和新猜想,如数问题、格雷厄姆猜想、哥德巴赫猜想、abc猜想、3x1问题、华林问题、欧拉数问题、素数链问题、卡塔兰猜想、费尔马大定理等及其延拓。此外,本书重视语言描写,对背景知识和图表予以关注。《数论:从同余的观点出发》可供数
方捷编著的《格论导引/现代数学基础》讲述格论的基本概念与基础知识。其内容涵盖:有序集、保序映射、格与半格、完全格、理想与同态、格同余等基本概念;模格与半模格;分配格;有补格与布尔代数;伪补代数;Heyting代数(或称剩余格);deMorgan代数;Priesdey拓扑对偶理论。在目前格论研究领域中,Priemey拓扑对偶空间理论是一个强有力的工具。为此,作者专门在第八章中给予详细的介绍,并附加一节介绍拓扑学的相关概念和基本性质,力求读者可以不借助拓扑学的教材也能理解、掌握相关的内容。《格论导引/现代数学基础》内容适合不同层次的读者,可作为数学与计算机类专业本科生或研究生格论课程的教材或教学参考书。
本书由潘承洞先生生前所写的《数论基础》讲义编辑整理而成。全书秉承了潘先生著作的贯风格,内容由浅入深、循序渐进,既精选紧凑,又全面深刻,同时附有大量的习题。本书内容独具一格,富有启发性,能够引导读者迅速进入数论的核心领域,了解数论最基本的思想和方法。书中定理和结论的证明简洁明快,既注重数论的技巧之美,又清晰地勾勒出数论方法的性。全书共分七章,内容包括整数的可除性,数论函数素数分布的一些初等结果,同余,二次剩余与Gauss互反律,指数、原根和指标,Dirichlet特征等。本书可供数学及相关的本科生研究生和教师使用参考,也可供对数论感兴趣的数学爱好者阅读。
本书是翻译版数学史教材。本书主要包含了小学、中学以及大学所涉及的数学内容的历史。本书将数学史按照年代顺序划分成若干时期,每一时期介绍多个专题。本书的前一半内容是讲述直到17世纪末微积分发明为止的这一时期的历史,后半部分内容则介绍18、19和20世纪数学。详细内容可参考目录。本书适合所有对数学的来龙去脉感兴趣的读者。正在学习数学的学生通过本书可以更深入地了解数学的发展过程。教师不仅可以使用本书讲解专门的数学史课程,而且可以在其他和数学相关的课程中使用本书的内容。