李继根等编的《矩阵分析与计算》是基于编著者多年从事矩阵分析类课程的教学改革实践经验,并结合学生的实际情况编写而成的,可作为高等院校理工科各专业研究生和工程硕士学习矩阵分析等相关课程的教材,也非常适合理工科高年级本科生学完线性代数课程后进一步学习之用。全书分为线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题七章。该教材既注意系统性,又注重体现工科特色,深广度适中,并适当略去了一些定理的证明。书中注重启发式教学,采用多种方式自然地引入基本概念和基本方法。同时,行文时非常注重几何直观及与类比,力争做到深入浅出、简洁易懂,以便于自学。书中还穿插了许多矩阵计算知识,并附有大量matlab代码,以渗透科学计算思维。此外,书中加入的大量数学史
吴悦辰编著的《三线坐标与三角形特征点》主要包括十章:三线坐标和重心坐标,三角形的特征点(一)——一些经典的几何特征点,三角形的特征点(二)——一些与透视相关的几何特征点,三角形的特征点(三)——共轭与变换,三角形的特征点(四)一一其他几何特征点,形形色色的直线,形形色色的三角形,形形色色的圆,三角形的二次曲线,三角形的三次曲线。本书适合数学爱好者参考阅读。
《离散粒子群优化算法及其应用》主要阐述离散粒子群优化(discrete particle swarmoptimization,DPS0)算法的具体构建及其在各种组合优化问题中的应用等。《离散粒子群优化算法及其应用》分为11章,各章节内容具体安排如下:章主要介绍了基本PSO算法的原理机制及其发展现状,并着重介绍了PSO算法的三种常见离散化策略,阐述了DPSO算法的应用成果;第2章主要介绍了PSO算法在TSP优化问题中的应用;第3章介绍了一种基于表现型共享函数的多目标粒子群优化算法及其在多工作流调度问题中的应用;第4章介绍了一种求解多目标最小生成树问题的改进计数算法,并详细阐述了一种用于求解多目标最小生成树问题的新型DPs0算法的具体设计过程;第5章主要介绍了PSO算法在入侵检测数据特征选择中的应用;第6章重点阐述了PSO算法在入侵检测系统异常检测和误用检测中的具体应用;第7
The general aim of thiook is to provide a modern approach to number theory through a blending of plementary algebraic and analytic perspectives, emphasizing harmonic analysis on topological groups. The more particular goal is to cover John Tate’s visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries---technical prerequisites that are often foreign to the typical, more algebraically inclined number theorist. While most of the esting treatments of Tate’s thesis are somewhat terse and less than plete, the authors’ intent is to be more leisurely, more prehensive, and more prehensible. The text addresses students who have taken a year of graduate-level courses in algebra, analysis, and topology. While the choice of objects and methods is naturally guided by specific mathematical goals, the approach iy no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representa
本书系统介绍有关数学难题——哥德巴赫猜想的研究成果,特别是我国数学家的重大贡献,同时介绍研究这一问题的一些重要方法。
《代数》(第3版):As I see it, the graduate course in algebra must primarily prepare studentsto handle the algebra which they will meet in all of mathematics: topology,partial differential equations, differential geometry, algebraic geometry, analysis,and representation theory, not to speak of algebra itself and algebraic numbertheory with all its ramifications. Hence I have inserted throughout references topapers and books which have appeared during the last decades, to indicate someof the directions in which the algebraic foundations provided by thiook areused; I have acpanied these references with some motivating ments, toexplain how the topics of the present book fit into the mathematics that is toe subsequently in various fields; and I have also mentioned some unsolvedproblems of mathematics in algebra and number theory. The abc conjecture isperhaps the most spectacular of these.