本书为《系统与控制理论中的线性代数》的第二版,保留了原书的基本理论,删除了不必要的内容,增加了近三十年来出现的新的重要理论。书中一些内容是作者长期研究的结果。本书分上下两册,共十三章。上册为基础理论,前四章概述与深化了线性代数的基本理论,后四章为几个重要的特殊理论。下册为应用部分,分别是数值代数的基础,关于稳定性和系统描述与设计涉及的内容,以及一些特殊的矩阵类、S过程和线性矩阵不等式。各章均附有习题。
本书是在多次讲授“组合学与图论”课程的讲义基础上修改而成的,许多教科书将组合学和图论分开写成两本,考虑到大多数专业的教学学时的实际情况,本书将组合学和图论合写成一本,以方便教与学,本书对基本概念的叙述力求深入浅出,清晰准确;对定理的证明力求简明易懂而又严谨;对例题的选择力求典型、充实,本书的重点是使学生理解应用组合学和图论的知识去分析和处理问题的思想和方法,并通过丰富多样的例题使学生更好地掌握课程的基本内容,注重培养学生分析和解决实际问题的能力,为了便于学生自学,对书中配置的难易程度不同的三百多道习题,给出答案或提示或简明的解答(证明)过程。本书可作为应用数学系、计算机系的本科生以及相关专业的研究生“组合学与图论”课程的教科书,也可作为“离散数学”课程的参考书。
本书系统介绍有关数学难题——哥德巴赫猜想的研究成果,特别是我国数学家的重大贡献,同时介绍研究这一问题的一些重要方法。
《不等式的分拆降维幂方法与可读证明》系统总结了作者及其合作者近十年来在不等式数学机械化领域的一系列研究成果及其软件(SCHUR01)实现。SCHUR01是基于作者提出的“分拆—降维—降幂—综合”等算法原理而开发的具有自动发现功能的新颖的不等式证明软件,适用于一般代数式乃至任意维数、任意次数的多项式的半正定判定及化问题。SCHUR01对于对称式尤为高效,并且从整体上是可读的。