本书与北京大学数学系几何与代数教研组编写的《高等代数(第三版)》相配套,在编写上也遵循此教材的顺序。全书共分9章,42节,111个条目,约210个问题,涉及多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、 -矩阵、欧式空间。 本书大量采用全国部分高校历届硕士研究生高等代数入学试题,并参阅了50余种教材、文献及参考书,经过反复推敲、修改和筛选,在长期教学实践的基础上编写而成。选材具有典型性、灵活性、启发性、趣味性和综合性,配套的各节练习题可提高学生进一步分析问题和解决问题的能力,对培养学生的能力极为有益。
乔治 布尔发明了一套符号用来进行逻辑演算,创造了逻辑代数系统,完成了逻辑的数学化。布尔称他的工作为 思维的定律 ,理由是命题代数和思维过程的原则紧密相联。 新的知识常常会为你解决一些意想不到的难题。布尔代数就可以应用于解决逻辑问题,这些问题的条件形成一个命题的总体,我们可以利用它证实某些其他命题的真和假。布尔代数在代数学、逻辑演算、集合论、拓扑空间理论、测度论、概率论、泛函分析等数学分支中均有应用。 本书介绍了布尔代数、广义布尔代数、布尔方程、布尔矩阵、布尔表示等概念,还列举了布尔代数在逻辑线路、极大极小值等问题中的应用。
这本书源自巴黎综合理工大学的一年级课程,全书主要内容包括: 数学小词典 以更紧凑的形式给出了如下数学基本概念的要点:群、环、域、矩阵、拓扑、紧性、连通性、完备性、数值级数、函数序列的收敛性、埃尔米特空间等,同时包含一百多个习题及解答。 讲述数学根基中的3个理论:有限群表示论、经典泛函分析和全纯函数理论。 13个问题校正综合了书中的定理,证明出一些漂亮结果(如证明 (3)是无理数)。 本书的主要特色在于强调数学的文化特性和数学的统一性。许多脚注都暂时离开数学的 高速公路 而进行了一次短途旅行。7个附录在课程内容范畴内讲述了经典数学文献的一些专题,展示如何结合这些基本理论来解决有深刻内涵的问题。其中之一是关于素数定理,它的证明经历了150多年才完成;另一个则是介绍了Langlands纲领, 数论学家已经围
本书分上、下两册出版。 莫宗坚、蓝以中、赵春来编著的《代数学(上第2 版)/现代数学基础》主要讲述近代代数的初步知识, 内容包括集合论与数论、群论、 多项式论、线性代数以及域论。 本书内容丰富,直观性强,推理自然,解释详尽 。此书的独到之处是 特别注重对于代数学的背景、基本思想以及与其他学 科的联系等方面的 介绍。书中精选了大量的例题和习题。本书的起点低 ,由浅入深。具有 高等代数基础知识的读者皆可以阅读本书,进而学到 现代代数学的较大部 分基础知识。 本书可作为高等学校数学系 高年级学生以及研究 生的教材,也可供 数学工作者参考。
本书选取经典的ACM/ICPC竞赛题目为例阐述图论算法思想,侧重于图论算法的程序实现及图论算法的应用。本书分为上、下两册。上册为~5章,其中章介绍图论基本概念和图的两种存储表示方法:邻接矩阵和邻接表,第2~5章分别讨论图的遍历与活动网络,树与生成树问题,最短路径问题,可行遍性问题。下册为第6~9章,分别讨论网络流问题,图的连通性,点支配集、点覆盖集、点独立集、边覆盖集、边独立集(匹配),平面图与图的着色问题等等。本书可以作为高等院校计算机(或相关专业)图论等相关课程的教材,也可作为ACM/ICPC竞赛的辅导教材。
本书比较全面、系统地介绍了矩阵的基本理论、方法及其应用。全书分上、下两篇,共10章,分别介绍了线性空间与线性算子,内积空间与等积变换,λ矩陈与若尔当标准形,赋范线性空间与矩阵范数,矩阵的微积分运算及其应用,广义逆矩阵及其应用,矩阵的分解,矩阵的克罗内克积、阿达马积与反积,几类特殊矩阵(如:非负矩阵与正矩阵、循环矩阵与素矩阵、随机矩阵和双随机矩阵、单调矩阵、M矩阵与H矩阵、T矩阵与汉大象尔矩阵等),辛空间与辛矩阵等内容。各章均配有一定数量的习题。附录中还给出了几套模拟自测试题。为了方便读者学习和参考,本书备有一张光盘,其中包含各章习题详解和模拟考试自测试题的解答提示等,供读者选用。 本书可作为理工科大学各专业研究生的学位课程教材,也可作为理工科和师范类院校高年级本科生的选修课教材,
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思维以及应用与建模。全书取材广泛,除包括定义、定理的严密陈述外,还配备大量的实例和图表的说明、各种练习和题目以及丰富的历史资料和网站资源。第6版在前五版的基础上做了大量的改进,使其成为更有效的数学工具。 本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
本书通过五十三个有趣味的、典型的或具有历史渊源的问题分析、解答,着重介绍了逻辑推理、命题代数、集合计算、初等数论、图论和初等组合数学等几个数学分支,使已具备离散数学初步知识的读者更多地了解这门学科的实质和思维方法,引导读者温游奥秘的数学世界,体会灵感、思维之美,本书是一本趣味性、知识性兼备的读物。 本书可作为初中学生、高中学生、大学低年级学生的课外读物,也可用作中学教师教学时选题参考和辅导数学竞赛的参考读物,具有中学以上文化水平的干部、职工中的数学爱好者,阅读此书将是一种精神享受。
吉祥图案作为我国历史文化传统中的一种文艺表现形式,与人们的生活、习俗以及文化背景有着极为密切的关联。它的起源可以追溯到原始社会的部落图腾以及当时一些器皿上的装饰性图案。生活在原始社会的人们,对生活和生存充满了热情,但也对自然界产生的某些现象存在着畏惧,于是出现了祭祀和卜筮。这些活动主要是占问凶吉的活动,而吉祥纹样的起源与远古先民观物取象的观察方式以及在卜筮活动中察看纹象的认识有直接关系。原始社会时期,彩陶中那些有意味的纹样已包含了一种广义的“吉祥”寓意,人们在陶器等物品上刻画符号和绘制纹饰,不仅是为了美观,而是带着对兆纹吉相的信任和希冀。他们相信,由纹样装饰的器物可以表达敬意,寄托祈福的愿望。彩陶纹饰中的人面鱼纹、蛙纹、鸟纹等,无论是出于巫术、祭祀、图腾还是祈求多子、生殖繁
陈建明、曾明、刘国荣编著的《离散数学(第3版)》系统地介绍了各种离散的数学结构,其中包括数理逻辑、集合论、代数系统和图论的基本内容。本书以证明方法和证明过程为重点,以关系的理念贯穿全书。在编写过程中力求内容精练、重点突出、深入浅出,有助于读者自我学习。书中内容可满足计算机专业后继课程的需要。 《离散数学(第3版)》可作为计算机软件专业、计算机通信专业、计算机制造专业和各类相关信息专业的本科生“离散数学”课程的教科书及教学参考书,同时也可供有关考研人员和自考人员学习和参考。
本书为丛书中的部,涵盖了初等数论的大部分内容,包括整除、同余、数论函数、二次剩余和原根等,此外也涉及有限域的基本知识。本书内容精炼扼要,习题丰富(不少比较新颖或具有难度),另有5个录供读者进一步研究。