本书旨在系统介绍非光滑优化理论与方法,全书共分为九章。章和第2章分别介绍凸集和凸函数的概念和有关性质;第3章引入凸函数的次微分,给出凸函数的极值条件与中值定理,并介绍次微分的性质和特殊凸函数的次微分表达式:第4章介绍局部Lipschitz函数的广义梯度,给出极大值函数广义Jacobi的计算;第5章阐述拟可微函数及拟微分的定义和性质;第6章针对凸规划、Lipschitz优化、拟可微优化给出性条件;第7章提出非光滑优化算法,包括下降方法、凸规划的次梯度法、凸规划的割平面法;第8章研究非光滑方程组及非线性互补问题;第9章介绍非光滑理论在控制论中的应用。 本书可作为应用数学、运筹学与控制论及经济管理有关专业的高年级本科生或研究生教材,也可供相关专业的科研工作者参考。
本书共有15章,其基本内容分为3个部分:医学伦理学概述(章~第三章)、医学实践与伦理要求(第四章~第十一章)、医学实践中的伦理问题(第十二章~第十五章)。主要介绍医学伦理学的发展以及基本原则和规范,医学实践过程中必须遵循的伦理要求,医学实践中的有关伦理问题。本书是一本比较全面系统论述当代医学伦理学理论和实践的读物,既可以作为高等医学院校的教材,又可以作为一般读者了解和掌握医学伦理问题的参考书。
本书是复分析领域近年来产生了广泛影响的一本著作。作者独辟蹊径,用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学美,书中讲述的内容有作为变换看的复函数、默比乌斯变换、微分学、非欧几何学、环绕数、复积分、柯西公式、向量场、调和函数等。 本书可作为大学本科生或研究生的复分析课程教材或参考书。
本书强调严格性和基础性, 书中的材料从源头——数系的结构及集合论开始, 然后引向分析的基础(极限、级数、连续、微分、Riemann积分等), 再进入幂级数、多元微分学以及Fourier分析, 到达Lebesgue积分, 这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合, 的是使学生能动地学习课程的材料, 并且进行严格的思考和严密的书面表达的实践。 本书适合已学过微积分的高年级本科生和研究生学习。
《新世纪高等学校教材·数学与应用数学系列教材:复变函数论》共分为六章,介绍了复数列、级数和辅角,用级数定义了指数函数等初等函数,证明了Euler公式,并利用它把复数的三角表示转化成书写简单的指数形式.包括:复变函数、复变函数的微分和积分、解析函数的级数理论等.
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分.第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题.第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法.第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相关,是处理某
本书强调严格性和基础性,书中的材料从源头——数系的结构及集合论开始,然后引向分析的基础(极限、级数、连续、微分、Riemann积分等),再进入幂级数、多元微分学以及Fourier分析,最后到达Lebesgue积分,这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合,的是使学生能动地学习课程的材料,并且进行严格的思考和严密的书面表达的实践。本书适合已学过微积分的高年级本科生和研究生学习。