本书根据《高职高专教育高等数学课程教学基本要求》一元函数微积分部分编写,全书共九章,包括函数定义及其性质的应用、极限的求法、函数连续性的判断与应用、导数的计算、中值定理与导数应用、不定积分的计算、定积分的计算、定积分的应用以及常微分方程解法等内容,精选了这些内容中的典型题型,并给出了详尽的分析和具体解法.本书可作为高职高专工科类各专业习题课,也可供经管类专业使用,还可作为“专升本”及学历文凭考试的参考书及相关学习资料。
《Haskell函数式编程基础:原书第3版》是一本非常的Haskell函数式程序设计的入门书,依次介绍函数式程序设计的基本概念、编译器和解释器、函数的各种定义方式、简单程序的构造、多态和高阶函数、数组和列表的结构化数据、列表上的原始递归和推理、输入输出I/O的控制处理、类型检测方法、代数数据类型、抽象数据类型、惰性计算等内容。《Haskell函数式编程基础:原书第3版》包含大量的实例和习题,注重程序测试、程序证明和问题求解,易读易学。《Haskell函数式编程基础:原书第3版》循序渐进,从基本的函数式程序设计直至专题,让读者对Haskell的学习不断深入。
作为此前出版的《非线性常微分方程边值问题》研究内容的后续进展,本书是作者十余年来在常微分方程和时滞微分方程周期轨道方面所作研究工作的总结.在介绍临界点理论和指标理论的基础上,对常用的指标理论和指标理论作出推广,提出和论证了Zn指标理论和Sn指标理论,拓展了应用范围.对不同类型的时滞微分方程通过选定相应的Hilbert空间,在其上给出自伴线性算子,构造特定的可微泛函,得出多个周期轨道的估计.对非自治型时滞微分方程的研究,是一个值得继续探索的方向.
《样条函数实用指南(修订版)》是著名数学家Carl de Boor的《样条函数实用指南》(1978)的修订版。原版本许多错误在修订版中得到了全面纠正。尤其是第九章到第十一章作了较大的修改,B-样条理论是直接建立在不依赖于均差的递归关系。这使得节点插入成为一个提供B-样条序列保形特性简单证明的强有力工具。 本书的章节安排详略得当,重点突出,有利于读者学习理解。章简要讲述了多项式插值,特别是均差理论。第二章介绍了初步的多项式逼近论知识,并为讲述分段多项式函数做准备。只想了解样条函数大体知识的读者可以略过随后的四章。它们主要讲述了分段线性逼近、分段立方插值以及抛物型样条插值。第七、八章讲述了任意序的分段多项式函数的计算处理。第九、十、十一章介绍了B-样条。余下的几章介绍了各种应用,几乎都涉及到B-样条。每章后
《雅可比定理--从一道日本数学奥林匹克试题谈 起/数学中的小问题大定理丛书》编著者梅根、佩捷。 《雅可比定理--从一道日本数学奥林匹克试题谈起/数学中的小问题大定理丛书》是“数学中的小问 题大定理”之一,通过一道日本数学奥林匹克试题研 究讨论雅可比定理及其相关知识。 本书可供从事这一数学分支或相关学科的数学工 作者、大学生以及数学爱好者研读。
本书讲述了复变函数的经典理论。作者用易于理解的方式严密介绍基础理论,强调几何观点,避免了一些拓扑学难点。书中首先从拓扑上较简单的情形论证了柯西积分公式,并引出连续可微函数的基本性质。然后阐述共形映射、解析延拓、黎曼映射定理、黎曼面及其结构,以及闭黎曼面上的解析函数等。书中包含大量的图示和丰富的例子,并附有习题,可以帮助读者增强对课程的理解。 本书可作为高等院校理工科专业复分析的入门教材,也可作为更高级学习研究的参考书
This book is a record of a course on functions of a real variable, addressed to first-year graduate students in mathematics, offered in the academic year 1985-86 at the University of Texas at Austin. It consists essentially of the day-by-day lecture notes that I prepared for the course, padded up with the exercises that I seemed never to have the time to prepare in advance; the structure and contents of the course are preserved faithfully, with minor cosmetic changes here and there.
内容简介
递推数列多年来一直是数学竞赛的命题来源,对于今天的竞赛选手及教练来说已不是难题。而利用差分方法求解数列问题有很多优点。《差分方程的拉格朗日方法:从一道2011年全国高考理科试题的解法谈起》从一道2011年全国理科试题的解法谈起,首先全文摘录了一篇作者23年前发表的小文章。然后再进行现实的联系并进而介绍差分方程理论的完整体系。并进一步介绍了俄罗斯数学家在差分方程解的稳定性方面的前沿结果。 《差分方程的拉格朗日方法:从一道2011年全国高考理科试题的解法谈起》适合于的初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等院校教师和学生的学习用书及数学爱好者的兴趣读物。
本书为“科学计算及其软件教学丛书”之一,主要介绍小波分析的基本理论、方法和应用,其内容包括:有限离散小波,无限离散小波,实数集上的小波,多种重要和常用的小波,以及小波在信息处理和科学计算领域的一些重要应用。全书由浅入深,注重原理,联系应用,每章附有习题,可供练习。 本书可作为信息与计算科学、数学与应用数学,以及相近专业的高年级大学生的教材和参考书,也可供从事信息处理或科学与工程计算的科技人员学习参考,具有数学分析和线性代数知识的读者也可以自学本书。
《Haskell函数式编程基础:原书第3版》是一本非常的Haskell函数式程序设计的入门书,依次介绍函数式程序设计的基本概念、编译器和解释器、函数的各种定义方式、简单程序的构造、多态和高阶函数、数组和列表的结构化数据、列表上的原始递归和推理、输入输出I/O的控制处理、类型检测方法、代数数据类型、抽象数据类型、惰性计算等内容。《Haskell函数式编程基础:原书第3版》包含大量的实例和习题,注重程序测试、程序证明和问题求解,易读易学。《Haskell函数式编程基础:原书第3版》循序渐进,从基本的函数式程序设计直至专题,让读者对Haskell的学习不断深入。