本书对于积分给予了更深层次的介绍,总结了一些计算积分的常用方法和惯用技巧,叙述严谨、清晰、易懂。
本书涵盖非线性规划的主要内容,包括无约束优化、凸优化、拉格朗日乘子理论和算法、对偶理论及方法等,包含了大量的实际应用案例. 本书从无约束优化问题入手,通过直观分析和严格证明给出了无约束优化问题的*性条件,并讨论了梯度法、牛顿法、共轭方向法等基本实用算法. 进而本书将无约束优化问题的*性条件和算法推广到具有凸集约束的优化问题中,进一步讨论了处理约束问题的可行方向法、条件梯度法、梯度投影法、双度量投影法、近似算法、流形次优化方法、坐标块下降法等. 拉格朗日乘子理论和算法是非线性规划的核心内容之一,也是本书的重点.
本书是一本常微分方程本科生教材,传统意义的微分方程是讲解求解微分方程解析解的特殊技巧,本书的特别之处在于首先将数学建模贯穿全书,然后以不同的方法进行解的表达,在解的裹达中,不仅仅限于解析解,主要以定性为主,通过斜率场、解的图像、相平面上的向量场及轨线等工具,到达对解的渐近行为的最好理解,最后以数值方法与计算机模拟为工具加深对解的行为的直觉理解.全书的图形演示课件可焱陆本书指明的课程网站下载.全书分5章,主要包括一阶微分方程、一阶二维微分方程组、二阶线性常系数徵分方程、一阶二维非线性方程组和一阶n维线性微分方程组.
《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》对于无穷乘积及其对解析函数的应用给予了更深层次的介绍,《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》总结了一些计算无穷乘积的常用方法和惯用技巧,叙述严谨、清晰、易懂。《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》适合于高等院校数学与应用数学专业学生学习,也可供数学爱好者及教练员作为参考。
本书中附有“八大问题”供有兴趣的读者研究探讨。大学数学系的师生、中学数学教师和喜爱数学的高年级学生,均可读懂本书的绝大部分内容。本书是对“*值”、“曲线、曲面方程”、“解析法”等概念和方法进行深入发掘的结果,因此,对中学、大学的数学教学,有很高的参考价值。 本书通过建立多边形、组合图形和多面体的方程,实现对折边与组合图形进行解析研究的梦想。书中建立了很多的方程,给出了已知图形构建其*值方程和已知方程画出图形的一系列方法,并对方程给出了若干应用。
本书对于复变函数给予了更深层次的介绍,总结了一些计算复变函数的常用方法和惯用技巧,叙述严谨、清晰、易懂。
《实变函数论新编/高等教育 十二五 规划教材》分为三章:章 集合论基础与点集初步 介绍了集合的概念、运算、势,讨论了Rn中集合的特殊点和特殊集及其性质;第二章 可测集与可测函数 ,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章 Lebesgue积分及其性质 定义了新积分,并讨论了新积分的性质。 鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习 实变函数 更多体会数学创新方法,《实变函数论新编/高等教育 十二五 规划教材》提供了四个附录供学生自学,也便于教师概略性地选讲。 《实变函数论新编/高等教育 十二五 规划教材》的适用对象为数学与应用数学专业本、专科学生。因《实变函数论新编/高等教育 十二五 规划教材》注重挖掘 实变函数 中数学创新思维与初等数学或
《极值与*值(下卷)》共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与*值的相关应用,变量代换法是求函数极值与*值的方法之一,它可使问题简化,本文对此进行了探讨。《极值与*值(下卷)》适合中学师生及广大数学爱好者阅读学习。
本书从1978年陕西省中学生数学竞赛中的一道试题引出法雷数列. 全文主要介绍了利用法雷数列证明孙子定理、法雷序列的符号动力学、连分数和法雷表示、提升为非单调的圆映射、利用法雷数列证明一个积分不等式等问题。全书共七章,读者可全面地了解法雷级数在数学中以及在生产生活中的应用。 本书适合数学专业的本科生和研究生以及数学爱好者阅读和收藏。
本书详细而全面地介绍了初等函数的相关概念、研究方法及初等函数趣题,并详细介绍了初等函数的各种性质、函数题常用的解题方法及函数题的一题多解,供读者参考.
《函数方程及其解法》包括了函数方程的理论和应用。特别强调了像普特南竞赛和国际数学奥林匹克中的函数方程题目的解法。《函数方程及其解法》对准备参加普特南竞赛和准备参加各类全国或国际数学竞赛而希望提高自己的解题技巧的大学生或中学生是特别有用的,那些对参赛学生进行辅导和训练的数学工作者也可在《函数方程及其解法》中找到培训函数方程问题的有价值的材料。
内容简介: 本书为《不定方程及其应用》的中册.详细介绍了非线性不定方程(组)及其解法,其中包括因式分解法、配方法、奇偶分析法、判别式法等,还包括利用完全平方数的性质、二项式定理、费马小定理求解非线性不定方程(组).内容详细,叙述全面. 本书适合高等院校理工科师生及数学爱好者参考阅读
《实变函数论专题梳理与解读(面向21世纪普通高等教育规划教材)》共分7章,每一章由四个部分组成:内容小结、要点分析、例题选讲、习题解答。其中,在“例题选讲”中精选了若干有针对性的例题,每一个例题都对所给的条件进行分析,寻找和发现解题的思路,给出了详尽的解题过程;在“习题解答”中详细解答了徐新亚编写的《实变函数论》中的所有习题。 全书选题多样,难度配置合理,注重分析推理,题目叙述清晰、论证严密,注意对分析能力与研究能力的培养,尤其是对创造性能力的培养。本书可作为综合性大学、理工科大学、高等师范院校数学系数学、概率统计和应用数学专业学生的学习辅助用书。对从事数学分析、实变函数教学工作的青年教师是一部实用的教学参考书。
内容简介:本书共有七章,分别为勾股数的性质及其应用,佩尔方程及其应用,无穷递降法,指数中含有未知数的一些特殊的不定方程(组),几何问题中的不定方程,其他一些特殊不定方程的解法,数学竞赛中与不定方程(组)相关的问题.本书适合大学师生及数学爱好者参考使用.
本书共 7 章 : 第 1 章 , 介绍了初等关联函数扩展研究的背景 ; 第 2 章 , 介绍了基元 、 可拓集等知识 ; 第 3 章 , 对初等关联函数进行了扩展研究 ; 第 4 章 , 建立了基于三区间套下不确定型初等关联函数的可拓安全预警模型 ; 第 5 章 , 建立了基于二区间套下确定型初等关联函数的露天矿边坡危险度可拓安全评价模型 ; 第 6 章 , 利用可拓学理论建立了煤层自然危险性判别模型 ; 第 7 章 , 建立了基于三区域套下不确定型初等关联函数的煤与瓦斯预警可拓模型 。
泛函分析是大学数学专业一门重要的专业课,其高度的概括性与抽象性也使其成为数学专业较难学习的课程之一。本书试图以漫谈的方式将泛函分析的基础内容娓娓道来,尽可能将这一抽象的课程通俗清楚地表达出来,方便学生对这门课程的深入了解。本书有两大特色,一是按照空间上的映射与空间的结构相适应的思想对教学内容进行编排,并体现在每章的标题上,使泛函分析中的空间与算子两大内容有机结合;二是将泛函分析史的知识以补充阅读的形式纳入全书,希望这也是对现行数学史教学改革的一个有益尝试。本书是在编者近10年的实践教学基础上编写而成。
本书根据《高职高专教育高等数学课程教学基本要求》一元函数微积分部分编写,全书共九章,包括函数定义及其性质的应用、极限的求法、函数连续性的判断与应用、导数的计算、中值定理与导数应用、不定积分的计算、定积分的计算、定积分的应用以及常微分方程解法等内容,精选了这些内容中的典型题型,并给出了详尽的分析和具体解法. 本书可作为高职高专工科类各专业习题课教材,也可供经管类专业使用,还可作为“专升本”及学历文凭考试的参考书及相关学习资料。
本书分为三章:章“集合论基础与点集初步”介绍了集合的概念、运算、势,讨论了Rn中集合的特殊点和特殊集及其性质;第二章“可测集与可测函数”,介绍了可测集合与可测函数概念,讨论了各自具有的性质和相互关系,为改造积分定义作必要的准备;第三章“Lebesgue积分及其性质”定义了新积分,并讨论了新积分的性质。鉴于学时所限,同时为了培养学生的自学能力,让学生通过学习“实变函数”更多体会数学创新方法,《实变函数论新编》提供了四个附录供学生自学,也便于教师概略性地选讲,《实变函数论新编》的适用对象为数学与应用数学专业本、专科学生,因《实变函数论新编》注重挖掘“实变函数”中数学创新思维与初等数学或日常思维的联系,因而尤其适宜师范院校数学专业本、专科学生使用。
《同济博士论丛 多复变亚纯函数及亚纯映射的*性定理》以多复变数的亚纯函数与亚纯映射的*性问题为研究对象。首次尝试讨论了涉及超曲面的亚纯映射*性问题,得到一个*性定理。
本书系统地介绍了许瓦兹引理、保角映射以及复函数的逼近。 并且着重地介绍了Carathéodory和Kobayashi度量及其在复分析中的应用。 论述深入浅出,简明生动,读后有益于提高数学修养,开阔知识视野。 本书可供从事这一数学分支相关学科的数学工作者、大学生以及数学爱好者研读。