本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
本书主要是面向青少年和本科经济类学生的自学教程。也可以作为面向大众的科普读物。本书中的趣味阐述使得微积分简单易学,并且涉及重要极限、中值定理、微分方程等微积分中核心概念。贴近我国读者的现实生活和考试文化。
本书阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,即可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
本书是论述不等式的理论与方法的一本专门若作,主要围绕着若干著名的经典不等式,从它们的证明方法,相互之间的联系以及它们的应用等几个方面加以系统地论述. 本书可供不等式研究工作者以及高等师范类院校数学教育专业的学生和数学爱好者参考阅读.
本书是为上海大学理工类、经管类本科学生微积分课程教学的配套训练习题集。全书由三个部分组成,每部分包含十套强化训练题,所有题目都给出了详细的解答过程。
不管你是理工科系的学生, 还是学商业、国际贸易、经济,可能都有这样的微积分修谋经验: 无论多么专心听讲,教授讲的内容你仍然听不懂。 本书试图告诉读者 “千万不要误以为昕不懂全是自已的错!” 本书是《微积分之屠龙宝刀》的续集,内容从极座标、无穷级数的收敛、空间向量,到参数曲线、多变数函数、偏导数、多重积分、向量场。 想换一种方式,理锯这些令人头疼的课题吗? 目的就是希望帮助读者更容易了解一般教科书里的精髓。
《中国科协三峡科技出版资助计划:分数阶微分方程边值问题理论及应用》在介绍分数阶微积分基础理论与若干现代数学方法的基础上,分别对分数阶微分方程两点边值问题、非局部共振与非共振问题、无穷区间边值问题以及变分方法在分数阶微分方程中的应用,给出了有解性、多解性及解的性的判断依据,展示了相关的研究技巧和方法。 《中国科协三峡科技出版资助计划:分数阶微分方程边值问题理论及应用》适用于大学数学专业高年级学生、研究生及对本方向有兴趣的研究人员。
微积分是财经类专业的核心课程之一,它的重要性是毋容置疑的。作为读者,一方面希望能深刻领会掌握教材的内容,另一方面又希望学习能具有前瞻性,能为以后的具体工作及各类考试服务。因此需要有一本既紧扣教材内容,与教学同步,同时又能反映当前各类考试情况的教学参考辅导书,这样就能在归纳,总结学习内容、测试学习效果的同时,同步了解考研等考试试题动向。 基于这一需要,我们精心地编写了这本书。在书的每一节里,我们首先列出了该节的要求和说明,主要内容及计算公式,然后给出大量详细的例题使读者在较短的时间内掌握该节内容。在每一章后面,我们列出了历年的考研真题,以便考研的同学能参考借鉴。为便于读者的自我测试,最后,又给出了一套自测题,做完后可参考解答来评价掌握的情况。
And all of the above is a basis for modeling. Modeling is what brings the subject to life and makes the ideas real for the students: Differential equations can model real-life questions,and puter calculations and graphics can then provide real-life answers. The symbiosis of the synthetic and the calculational provides a rich educational experience for students, and it prepares them for more concrete, applied work in future courses. The new Anatomy of an Application sections in this edition showcase some rich applications from engineering, physics, and applied science.
本书介绍了十多位的数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。 本书兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物,更是数学爱好者的佳肴。