本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种 有趣、 易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的“小书”。本书适合中学以上水平的数学爱好者、学生和教师阅读。
不管你是理工科系的学生,还是学商、国贸、经济,可能都有这样的微积分修课经验:无论多么专心听讲,教授讲的内容你仍然听不懂。本书作者试图告诉读者:“千万不要误以为听不懂全是自己的错!” 《微积分之屠龙宝刀》并非正式教科书,除了着重观念的解释之外,它还会告诉读者微积分该怎么教、好老师该怎么找、期末考试该怎么考,目的就是希望帮助读者更容易了解一般教科书里的精髓。
本书寻找最少且自封(不依赖于未证明的结果)的微积分,即最少的概念:微分和积分(实是一个概念,后者乃前者之和);最少的定理:基本定理和泰勒定理(实是一个定理,后者乃前者的连用);最简的解释(实是两张图)、最短的证明(实是两行算术,没有更多)、最少的数学符号(阿基米德的传统,多用文字和图形).这些概念、定理和证明只用到两张图、两行算术,不用实数,适合于文科;对理科还要加上最少的(即一个)微分方程,这时才用到实数.
本书主要是面向青少年和本科经济类学生的自学教程。也可以作为面向大众的科普读物。本书中的趣味阐述使得微积分简单易学,并且涉及重要极限、中值定理、微分方程等微积分中核心概念。贴近我国读者的现实生活和考试文化。
“苹果有3个,蜜橘有3个,两边‘同样’是3个。但‘苹果’与‘蜜橘’并不相同,如何能视为‘同样’呢?”数学是一门十分重要的学问,怎样将如此重要的学问表现得直观、形象呢?教科书和习题集上是满满当当枯燥的文
本书为微积分入门科普读物,书中以微积分的“思考方法”为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需“轻松阅读”便可以理解微积分原理的入门书。
本书是论述不等式的理论与方法的一本专门若作,主要围绕着若干著名的经典不等式,从它们的证明方法,相互之间的联系以及它们的应用等几个方面加以系统地论述. 本书可供不等式研究工作者以及高等师范类院校数学教育专业的学生和数学爱好者参考阅读.
本书内容包括:基本定理、二维系统的平衡点、二维系统的极限环、动力系统、振动方程与生态方程、n维系统的平衡点、多重奇点的分支、hopf分支、从闭轨分支出极限环、同宿分支及异宿分支、高维问题、综合应用、柱面和环面上的动力系统及其应用。
微积分作为整个数理知识体系的基石,不仅对后续诸多数理知识体系的研习具有基础性的意义,而且微积分知识体系自身就为认识世界提供了系统的思想与方法。 《微积分讲稿:高维微积分》主要针对向量值映照建立微分学与积分学,另包括级数。高维微分学主要包括:点列的极限、向量值映照的极限、向量值映照的可微性与导数、多元函数的分析性质、多元函数的无限小分析方法、多元函数与向量值映照的有限增量公式与估计、隐映照定理及其应用、逆映照定理及其应用等。高维积分学主要包括:曲线、曲面上积分的建立、闭方块上Riemann积分的Darboux分析与Lebesgue定理、Fubini定理与体积分换元公式、广义积分与含有参变量的积分、Gauss-Ostrogradskii公式、Green公式、Stokes公式与场论基础等。级数主要包括:数项级数、函数项级数、幂级数、Fourier级数等。 《微
本书第四版对2004年第三版的内容作了全面细致的修订,并补充了第三版出版以来不等式研究的新的重要成果,充分反映了20世纪以来,特别是20世纪90年代以来不等式理论和方法的进展。全书共分17章,包含了美国数学评论(MR)2000主题分类中所有关于不等式论题的40个三级分类项目,还包括了外历年来大、中学生各类数学竞赛和研究生入学考试中所出现的新的不等式,以及工程技术问题中常用的不等式,所收录的不等式增加到6千多个,第四版还总结了不等式的常用证法55种,提出了212个未解决或值得进一步研究的问题。由于不等式在数学各个领域和科学技术中都是不可缺少的基本工具,加上本书起点低,因而本书的读者面是非常广泛的,各种不同专业水平的读者,不论是大中学师生,数学研究者,还是工程技术人员,都可以从中找到各自感兴趣的有用材料和研究课题。
本书打破模式化和形式化的编书体系,在逻辑化渐进式的编书理念指引下,对当今教材的结构进行了全面的革新,以兴趣为主导、以逻辑为基础,让大家在轻松学习微积分的同时深刻理解其本质,掌握其基本方法。 本书从古代“割圆术”的极限讲起,依照历史发展的时间顺序和学科发展的逻辑顺序全面解读微积分。从而揭示出微积分的本质。讲解微积分的基本知识和方法,然后揭示出“无穷小”这个概念的重要性。在此基础上。深入讲解高等微积分的知识,如傅立叶级数、椭圆积分和场论等。 微积分是当今大学一年级学生几乎必修的基础课程,但是本书起点低。具有科普的性质,适合具有高中学历者自学:又因为本书有教材的特点。尽量做到对知识的全面和深入讲解,所以可以作为大学生的课外补充材料,尤其是针对那些对微积分头疼的以及学习过微积分但
《重刚体绕不动点运动方程的积分法》的内容为叙述近代复变函数论的方法对于力学的一个特殊问题(重刚体绕不动点运动的问题)的应用,也就是微分方程的解析理论的方法对于动力学方程的积分法的应用。《重刚体绕不动点运动方程的积分法》大体分为:部分,讲理论力学的基本知识;第二部分,讲重刚体绕不动点运动的各种情形以及在这些情形之下的积分法;第三部分,讲的是复变函数的基本知识;最后一部分提到运动方程积分法的某些补充。 《重刚体绕不动点运动方程的积分法》可供数学、力学、物理各专业的一般参考之用。
这是当今偏微分方程(PDE)教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。《偏微分方程(第二版)(英文版)》内容广泛、阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 ·新增非线性波动方程的一章 ·超过80个新习题 ·许多新的小节 ·大大扩充了参考文献
《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》是《微积分之屠龙宝刀》的续集,内容从极座标、无穷级数的收敛、空间向量,到参数曲线、多变数函数、偏导数、多重积分、向量场。想换一种方式,理解这些令人头疼的课题吗?欢迎你拿起《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》,跟随三位作者的脚步,一同披荆斩棘,度过危机,不管你是理工科系的学生,还是学商业、国际贸易、经济,可能都有这样的微积分修课经验:无论多么专心听讲教授讲的内容你仍然听不懂。《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》试图告诉读者:“千万不要误以为听不懂全是自己的错!”
本书介绍傅里叶变换和拉普拉斯变换这两类积分变换的基本概念、性质及应用.每章章末都配有精选的习题和测试题,方便读者检验学习效果.书中性质等相关证明过程详细,注重数学思想、方法和技巧的运用,有利于培养灵活多样、举一反三的科学素养.书末附有常用函数的积分变换简表,可供学习时查用. 本书可供高等学校理工科相关专业作为使用,也可作为任课教师的教学参考书,还可供有关工程技术人员参考使用.
微积分最有用和急需的有两张表导数表和积分表怎么得到的?过去的证明又长又深陷入泥潭,但本书另择渠道,把证明复杂度降到几步高中数学,又短又浅,是教学的巨变,也圆了微积分高中化之梦! 一举攻破两张表后还不够,大学专业或考研的学生要学更多(包括微分方程、多元微积分及抽象微积分)。这时,高中数学已不够用,必须有极限以及更高深的方法参战,本书只是按浅到深、急到缓顺序出场,概念能少就少,证明越浅越好,不误用不添乱,到了该出手才出手。 书中还对比了微积分教学的过去和现在。
《偏微分方程的有效动力学(英文)》是国外数学著作原版系列中的一本。《偏微分方程的有效动力学(英文)》主要介绍几类重要的偏微分方程及其动力系统的动力学研究成果。《偏微分方程的有效动力学(英文)》系统地介绍了动力系统动力学的研究方法和作者近期的研究成果。
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
《常微分方程定性与稳定性方法》是为理工类专业的硕士研究生和高年级本科生的需要所编写的一《常微分方程定性与稳定性方法》.《常微分方程定性与稳定性方法》为第二版.主要包括定性理论、稳定性理论和分支理论三个部分.内容着眼于应用的需要取材精练,注意概念实质的揭示、定理思路的阐述、应用方法的介绍和实际例子的分析,并配合内容引入计算机软件.每章后附有习题供读者练习.
这是当今偏微分方程(PDE)教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。《偏微分方程(第二版)(英文版)》内容广泛、阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 ·新增非线性波动方程的一章 ·超过80个新习题 ·许多新的小节 ·大大扩充了参考文献