本书是美国著名数学家Peter Lax与康奈尔大学数学教授Maria Terrell合作的多元微积分教材,作为《微积分及其应用》(中译本见本丛书第32号)的续篇,其内容涵盖了平行于一元微积分的基础部分,包括:向量和矩阵、多元函数的连续性、多元函数的微分及其应用、多元函数的积分、向量值函数在曲线与曲面上的积分,以及作为一元函数微积分基本定理的多元推广??格林定理、散度定理、斯托克斯定理.此外,作者在散度定理、斯托克斯定理这一章还补充了对守恒律的介绍,并专辟一章介绍了数学物理中典型的几类偏微分方程.跟Lax的其他教材风格一致,作者在本书中一如既往地贯彻了牛顿的主张“达到理解的绝佳方式是通过少量好的例子”.Lax对数学之应用造诣非凡,他成功地将来自物理的诸多例子融入这两本微积分教材,将数学与物理融会贯通.本书末尾提供了部分习题的答案.
本书是美国著名数学家彼得·拉克斯与康奈尔大学数学教授玛丽亚·特雷尔合著的单变量微积分教材,内容覆盖了一元微积分的基础,包括:数列的极限、函数的连续性、函数的微分、可微函数的基本理论、导数的应用、函数的积分、积分的方法、积分的近似计算,以及微分方程。另有两章介绍复数与概率。本书与拉克斯的另一著名教材《线性代数及其应用》简明清晰、行云流水的风格一致,通过引入许多背景自然的应用实例,两位作者致力于引导读者对微积分这一重要的基础课题获得理解。本书末尾还提供了部分习题的答案。
《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两
本书在 Sobolev 空间框架下, 介绍了积分泛函极小问题的现代偏微分方程的理论, 内容包括 Sobolev 函数空间及各种性质;经典变分方法:一阶变分、二阶变分、极小点存在的充分和必要条件、条件极值的 Lagrange 乘子法等;变分法的直接方法:下半连续性、补偿紧性、集中紧性、 Ekeland变分、Nehari 技巧等;三维欧氏空间极小曲面的 Douglas 方法和等周不等式的证明.
本书讲述偏微分方程现代理论的最基础部分,内容共五章.其中前两章系统介绍函数空间、广义函数和Fourier分析理论的最基础部分,是学习偏微分方程现代理论必须具备的最基本的分析学知识,第3和第4两章系统讲述了二阶线性椭圆型方程和二阶线性抛物型、双曲型和Schr?dinger型三类发展型方程的最基础理论,这两章内容的学习能够基本满足希望专门研究椭圆型方程、抛物型方程或非线性发展方程以及相关学科领域读者的需要.最后一章简要介绍线性偏微分方程一般理论和拟微分算子理论.本书最突出的特点是把椭圆型方程和抛物型方程的Cμ理论与Lp理论都用Fourier分析理论做了统一的处理,并把这些理论都构建在L2理论之上,从而使得这些以前需要与偏微分方程的Fourier分析方法独立地学习的不同理论体系很自然地融合在一起.
本书内容包括常微分方程初值、边值问题的数值解法,抛物型、双曲型及椭圆型偏微分方程的差分解法,偏微分方程和边界积分方程的有限元解法和边界元解法.本书选材力求通用而新颖,既介绍了在科学和工程计算中常用的典型数值计算方法,又包含了近年计算数学研究的一些新的进展,包括作者本人的若干研究成果.本书以介绍微分方程的数值求解方法为主,但也涉及有关的理论,叙述和论证力求既深入浅出,又严格准确.
《边界积分-微分方程方法的数学基础(英文版)》主要讨论边界积分-微分方程的数学基础理论,主要聚焦于把传统的边界积分方程中的超奇异积分转化为带弱奇性的边界积分-微分方程。《边界积分-微分方程方法的数学基础(英文版)》简要介绍了分布理论,而边界积分方程方法基于线性偏微分方程的基本解,所以对微分方程的基本解做了较为详细的介绍。在余下的章节里,依次讨论了拉普拉斯(Laplace)方程、亥姆霍兹(Helmholtz)方程、纳维(Navier)方程组、斯托克斯(Stokes)方程等的边界积分-微分方程方法和理论;还讨论了某系非线性方程,如:热辐射、变分不等式和斯捷克洛夫(Steklov)特征值问题的边界积分-微分方程理论。最后,讨论了有限元和边界元的对称耦合问题。
本书是一本 有趣的微积分入门参考书,它从蚂蚁的视角来讲解微积分。当打开本书时,你会发现蚂蚁无处不在。借助小小的蚂蚁,本书将微积分的核心概念和原理用 简单、 有趣、 容易理解的方式呈现了出来。无论是初次学习微积分的学生,还是学习过微积分却一知半解的学生,抑或是希望重新梳理微积分知识的读者,都能从这本书中有所收获。它将帮助你 通透地理解微积分,理解数学,帮助你在数学等科目的学习中变得 从容自信。
本书为微积分入门科普读物,书中以微积分的“思考方法”为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需“轻松阅读”便可以理解微积分原理的入门书。
本书根据S.Kobayashi and K.Nomizu 所著的Foundations of Defferential Geometry (Wiley & Sons公司出版的Wiley经典文库丛书(1996 版)(第一卷)译出。本卷首先给出了若干必要的预备知识,主要包括微分流形、张量代数与张量分析、Lie群和纤维丛等。本卷的中心内容是联络理论,不仅论述了一般联络理论,还具体讲述了线性联络、仿射联络、黎曼联络等。然后讲述了曲率形式和空间形式以及各种空间变换。此外,本卷还给出了7个附录和11个注释,分别介绍了若干备查知识和历史背景材料。
本书从常识性的平凡道理出发, 不用极限概念也不用无穷小概念, 直截了当地定义了函数的导数, 证明了导数的常用性质; 定义了定积分, 推出了微积分基本定理. 严谨而不失直观的推理, 颠覆了微积分必须以极限概念为基础的传统观点. 全书共 18 章, 前 10 章用作者发现的新方法构建了一元微积分的逻辑框架; 后 8 章阐述新方法与传统体系的关系和接轨的方案, 以及一些重要的微积分知识. 本书化解了传统微积分教学的若干**难点, 为建立高中和大学的微积分新体系描绘了蓝图.
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以
莱布尼兹和牛顿关于微积分优先权的争论闻名整个学术界,甚至是学术界之外。现在,学术界 ,莱布尼兹和牛顿分别独立地创立了微积分,只是牛顿先发明,莱布尼兹先发表。但这场争论在牛顿、莱布尼兹所生活的时代,甚至在他们去世后的很多年都很激烈,中间也发生了很多趣事。本书既包含了莱布尼兹创建微积分的过程,也包含了莱布尼兹在微积分优先权争论期间为自己做出的申辩,从中可以了解他创建微积分的过程以及这场争论发生的部分缘由和过程。另外,中译版本中还增加了大量插图,具有很强的可读性。
本书系统讲述了偏微分方程一般理论的主要结果和研究方法。主要内容包括:实分析与泛函分析在Sobolev空间中的应用,整数次与分数次Sobolev空间的基本性质和基本技巧,如逼近理论、紧嵌入理论、迹定理、单位分解等基本理论以及局部化、平直化、光滑化和紧支化等技巧,二阶线性椭圆方程的各类边值问题弱解的存在唯一性、正则性、极值原理、Schauder理论等方面的主要结果以及泛函方法、特征值方法、差商方法等现代偏微分方程方法和De Giorgi迭代技巧,二阶线性抛物方程和二阶线性双曲方程的基本理论,弱解的存在唯一性、正则性,能量方法,Galerkin方法,Lions定理与发展方程以及线性抛物型方程的Schauder理论和Lp理论,一阶线性双曲型方程式的特征线方法,一阶线性双曲型方程组的基本概念和对称双曲系统的黏性消失法等。
章 引言 1.1 实数连续统 1.2 函数的概念 1.3 初等函数 1.4 序列 1.5 数学归纳法 1.6 序列的极限 1.7 再论极限概念 1.8 单连续变量的函数的极限概念 补篇 S1 极限和数的概念 S2 关于连续函数的定理 S3 极坐标 S4 关于复数的注记 问题 第二章 积分学和微分学的基本概念 2.1 积分 2.2 积分的初等实例 2.3 积分的基本法则 2.4 作为上限之函数的积分-不定积分 2.5 用积分定义对数 2.6 指数函数和幂函数 2.7 X的任意次幂的积分 2.8 导数 2.9 积分、原函数的微积分基本定理 补篇 问题 第三章 微分法和积分法 部分 初等函数的微分和积分 3.1 *简单的微分法则及其应用 3.2 反函数的导数 3.3 指数函数的某些应用 3.5 双曲函数 3.6 值和*小值问题 3.7 函数的量阶
本书是一本同时介绍线性和非线性积分方程的教材,分成两部分,各部分自成体系。部分主要对类、第二类线性积分方程进行了系统、深入的分析并提供各种解法;第二部分主要讲述非线性积分方程求解及其应用,针对不适定fredholm问题、分歧点和奇异点等问题进行了系统的分析,并提供易于理解的处理方法。 本书通过大量的例子讲述线性与非线性积分方程发展起来的高效解法,无须要求读者对抽象理论本身有很深的理解,同时也讨论了某些经典方法一些有价值的改进。书中对这些方法都给出了很好的解释,并通过对这些方法进行对比,使得读者能够快速地掌握并选择可行且高效的方法。本书提供了大量的习题,并在书后附有答案。 本书可作为应用数学、工程学及其相关专业的高年级本科生和研究生教材,也可供相关领域的工程师参考。
本书主要内容包括:Differential forms I、Differential forms II、Tensor products、Metrics、Yang-Mills connections、Linear connections、Curvature等。