《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两
本书是一本同时介绍线性和非线性积分方程的教材,分成两部分,各部分自成体系。部分主要对类、第二类线性积分方程进行了系统、深入的分析并提供各种解法;第二部分主要讲述非线性积分方程求解及其应用,针对不适定fredholm问题、分歧点和奇异点等问题进行了系统的分析,并提供易于理解的处理方法。 本书通过大量的例子讲述线性与非线性积分方程发展起来的高效解法,无须要求读者对抽象理论本身有很深的理解,同时也讨论了某些经典方法一些有价值的改进。书中对这些方法都给出了很好的解释,并通过对这些方法进行对比,使得读者能够快速地掌握并选择可行且高效的方法。本书提供了大量的习题,并在书后附有答案。 本书可作为应用数学、工程学及其相关专业的高年级本科生和研究生教材,也可供相关领域的工程师参考。
本书全面系统地论述微分方程的分析力学方法,包括微分方程的力学化、降阶法、Hamilton-Jacobi方法、Poisson方法、Noether方法、Hojman方法、场方法、势积分方法、共形不变性、Jacobi最终乘子、Lagrange方法与Birkhoff方法、力学化与稳定性等。 本书可作为高等学校力学、数学、物理学,以及工程专业高年级本科生和研究生的教学参考书,亦可供有关教师、力学工作者和科技人员参考。
Theprincipalthemeofthisbookis“theexistenceanddifferentiabilityofthesolutionsofvariationalproblemsinvolvingmultipleintegrals.”Weshalldiscussthecorrespondingquestionsforsingleintegralsonlyverybrieflysincethesehavebeendiscussedadequatelyineveryotherbookonthecalculusofvariations.Moreover,applicationstoengineering,physics,etc.,arenotdiscussedatall;however,wedodiscussmathematicalapplicationstosuchsubjectsasthetheoryofharmonicintegralsandtheso-called“d-Neumann”problem(seeChapters7and8).SincetheplanofthebookisdescribedinSection1.2belowweshallmerelymakeafewobservationshere.
《多元微积分(第3版)(英文版)》是全面,知识体系新颖的多变量微积分教程。旨在解决广大多变量微积分学者遇到的新老问题,内容包括:(部分)基础资料:向量;向量微分;多变量函数;链式法则和梯度;(第二部分)值,值和泰勒公式:值和值等。
《偏微分方程(第1卷)》是一部两卷集的偏微分方程教材。多变量椭圆,抛物和双曲方程是研究的主要对象,解决了PDE和多变量方法之间的关系。卷中集中研究了流形上的积分和微分,泛函解析基础,映射的Brouwer度,广义解析函数和圆周同调这些议题,在这一卷中通过积分表示论解决偏微分方程问题,第二卷中讲述函数解析解法。书中各章的独立性较强,有偏微分方程基本知识的读者可以独立阅读各章。
本书是(英文版)一本关于曲线和曲面微分几何的导论,介绍微分几何这两个方面的局部特性与整体特性。同传统的微分几何教材不同,本书更广泛地应用初等线性代数的知识,并把重点放在基本的几何论据上。 为取得概念与实际材料之间的适度平衡,本书还包含大量的例子,并合理安排习题,其中包含经典微分几何的某些实际题材。
本书主要内容包括:Differential forms I、Differential forms II、Tensor products、Metrics、Yang-Mills connections、Linear connections、Curvature等。
本书是作者在华东师范大学数学系近几年给研究生上专业课所用的讲义基础上编写而成的。其特点在于作者既对奇异摄动理论中的基本问题做了深入浅出的论述,又对当前该领域的前沿问题——空间对照结构理论进行了介绍,还列举了丰富的例子便于读者掌握。 全书共分六章,各章内容为:基本概念,初值问题,两点边值问题,无穷大解的初边值问题,阶梯状空间对照结构,脉冲状空间对照结构型解。 本书的读者对象为大学高年级本科生、研究生以及各行各业对奇异摄动理论和方法感兴趣的科技工作者。
本书主要介绍许多工程和科学研究领域中有关分数阶偏微分方程的数值方法及其理论分析的成果,这些内容大部分是作者及其合作者得到的研究成果。这些分数阶偏微分方程包括空间,时间,时间-空间分数阶扩散方程,分数阶对流-扩散方程,分数阶反应-扩散方程,反常次扩散方程,修正的反常次扩散方程,反常超扩散方程,分数阶Cable方程,也包括多项时间-空间分数阶偏微分方程和变分数阶偏微分方程。分数阶偏微分方程的数值方法及其理论分析包括有限差分方法,有限元方法,谱方法,有限体积方法,无网格方法。我们讨论了数值方法的稳定性和收敛性,给出了数值结果,同时我们也介绍分数阶偏微分方程的一些应用实例。
本书论述了由线性常微分算式在空间L2上所生成的线性算子的谱理论,及其亏指数及判定、自伴延拓、谱染特点、谱分解等,有限区间情形给出Liouville、Sturm和泛函分析三种处理.无限区间情形,详细讨论了二阶Smrm-Liouville算子经典的Weyl理论、极限点、圆的判别、自伴延拓的谱分解与Titchmarsh按特征函数的展开。 本书可供高等院校数学系本科生、研究生、教师及科研人员阅读参考。
从自然定律的基本方程出发,采用一些近似的模型、近似的方法导出第二性的针对具体问题的方程,应是物理学各课程和数学物理课程的基本训练之一。数学是一种严密的逻辑推理,用一些数学模型来模拟物理自然现象使得一些物理现象变得可以理解。模型当然要不断修正使之逼近实际情况。模型理论是物理实在的近似描写,是我们认识真理的重要工具之一。 人们已对数学物理方程做了广泛深入的研究,并出版了不少关于这方面的著作。这本入门书主要想根据各种定解问题及其有关解法来展开讨论。本书除了介绍数学物理方程的一般知识外,主要介绍方程的三种常用解法:分离变量法、积分变换法和格林函数法,还简明介绍了特征线法、平均值法、降维法和黎曼方法等一些其他求解方法。最后一章介绍一些实例,目的在于加强数学和物理的联系,为增强读者的应用