微积分作为整个数理知识体系的基石,不仅对后续诸多数理知识体系的研习具有基础性的意义,而且微积分知识体系自身就为认识世界提供了系统的思想与方法。 《微积分讲稿:高维微积分》主要针对向量值映照建立微分学与积分学,另包括级数。高维微分学主要包括:点列的极限、向量值映照的极限、向量值映照的可微性与导数、多元函数的分析性质、多元函数的无限小分析方法、多元函数与向量值映照的有限增量公式与估计、隐映照定理及其应用、逆映照定理及其应用等。高维积分学主要包括:曲线、曲面上积分的建立、闭方块上Riemann积分的Darboux分析与Lebesgue定理、Fubini定理与体积分换元公式、广义积分与含有参变量的积分、Gauss-Ostrogradskii公式、Green公式、Stokes公式与场论基础等。级数主要包括:数项级数、函数项级数、幂级数、Fourier级数等。 《微
《重刚体绕不动点运动方程的积分法》的内容为叙述近代复变函数论的方法对于力学的一个特殊问题(重刚体绕不动点运动的问题)的应用,也就是微分方程的解析理论的方法对于动力学方程的积分法的应用。《重刚体绕不动点运动方程的积分法》大体分为:部分,讲理论力学的基本知识;第二部分,讲重刚体绕不动点运动的各种情形以及在这些情形之下的积分法;第三部分,讲的是复变函数的基本知识;最后一部分提到运动方程积分法的某些补充。 《重刚体绕不动点运动方程的积分法》可供数学、力学、物理各专业的一般参考之用。
这是当今偏微分方程(PDE)教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。《偏微分方程(第二版)(英文版)》内容广泛、阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 ·新增非线性波动方程的一章 ·超过80个新习题 ·许多新的小节 ·大大扩充了参考文献
《偏微分方程的有效动力学(英文)》是国外数学著作原版系列中的一本。《偏微分方程的有效动力学(英文)》主要介绍几类重要的偏微分方程及其动力系统的动力学研究成果。《偏微分方程的有效动力学(英文)》系统地介绍了动力系统动力学的研究方法和作者近期的研究成果。
《中国科协三峡科技出版资助计划:分数阶微分方程边值问题理论及应用》在介绍分数阶微积分基础理论与若干现代数学方法的基础上,分别对分数阶微分方程两点边值问题、非局部共振与非共振问题、无穷区间边值问题以及变分方法在分数阶微分方程中的应用,给出了有解性、多解性及解的性的判断依据,展示了相关的研究技巧和方法。 《中国科协三峡科技出版资助计划:分数阶微分方程边值问题理论及应用》适用于大学数学专业高年级学生、研究生及对本方向有兴趣的研究人员。
这是当今偏微分方程(PDE)教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。《偏微分方程(第二版)(英文版)》内容广泛、阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 ·新增非线性波动方程的一章 ·超过80个新习题 ·许多新的小节 ·大大扩充了参考文献
这是当今偏微分方程(PDE)教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。《偏微分方程(第二版)(英文版)》内容广泛、阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 ·新增非线性波动方程的一章 ·超过80个新习题 ·许多新的小节 ·大大扩充了参考文献
这是当今偏微分方程(PDE)教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。《偏微分方程(第二版)(英文版)》内容广泛、阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 ·新增非线性波动方程的一章 ·超过80个新习题 ·许多新的小节 ·大大扩充了参考文献
微积分作为整个数理知识体系的基石,不仅对后续诸多数理知识体系的研习具有基础性的意义,而且微积分知识体系自身就为认识世界提供了系统的思想与方法。 《微积分讲稿:高维微积分》主要针对向量值映照建立微分学与积分学,另包括级数。高维微分学主要包括:点列的极限、向量值映照的极限、向量值映照的可微性与导数、多元函数的分析性质、多元函数的无限小分析方法、多元函数与向量值映照的有限增量公式与估计、隐映照定理及其应用、逆映照定理及其应用等。高维积分学主要包括:曲线、曲面上积分的建立、闭方块上Riemann积分的Darboux分析与Lebesgue定理、Fubini定理与体积分换元公式、广义积分与含有参变量的积分、Gauss-Ostrogradskii公式、Green公式、Stokes公式与场论基础等。级数主要包括:数项级数、函数项级数、幂级数、Fourier级数等。 《微
本书是本科生的微积分教学用书,主要内容为:牛顿运动学基本定律(开篇),向量代数,天体力学简介,线性变换,微分形式和微分演算,隐函数反函数定理,重积分演算,曲线曲面积分,微积分基本定理,经典场论基本定理,爱因斯坦狭义相对论简介。本书特别注意数学与物理、力学等自然科学的内在联系和应用。作者在理念导引、内容选择、程度深浅、适用范围等方面都有相当周密的考虑。从我们重点大学的教学角度看,本书的难易程度与物理、力学和电类专业数学课的微积分相当,而思想内容则要深刻和生动些,因此适于用作这些专业本科生的教科书或学习参考书。
本书全面系统地论述微分方程的分析力学方法,包括微分方程的力学化、降阶法、Hamilton-Jacobi方法、Poisson方法、Noether方法、Hojman方法、场方法、势积分方法、共形不变性、Jacobi最终乘子、Lagrange方法与Birkhoff方法、力学化与稳定性等。 本书可作为高等学校力学、数学、物理学,以及工程专业高年级本科生和研究生的教学参考书,亦可供有关教师、力学工作者和科技人员参考。
这是当今偏微分方程(PDE)教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。《偏微分方程(第二版)(英文版)》内容广泛、阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 ·新增非线性波动方程的一章 ·超过80个新习题 ·许多新的小节 ·大大扩充了参考文献
Theprincipalthemeofthisbookis“theexistenceanddifferentiabilityofthesolutionsofvariationalproblemsinvolvingmultipleintegrals.”Weshalldiscussthecorrespondingquestionsforsingleintegralsonlyverybrieflysincethesehavebeendiscussedadequatelyineveryotherbookonthecalculusofvariations.Moreover,applicationstoengineering,physics,etc.,arenotdiscussedatall;however,wedodiscussmathematicalapplicationstosuchsubjectsasthetheoryofharmonicintegralsandtheso-called“d-Neumann”problem(seeChapters7and8).SincetheplanofthebookisdescribedinSection1.2belowweshallmerelymakeafewobservationshere.
这是当今偏微分方程(PDE)教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。《偏微分方程(第二版)(英文版)》内容广泛、阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 ·新增非线性波动方程的一章 ·超过80个新习题 ·许多新的小节 ·大大扩充了参考文献
本书是作者在华东师范大学数学系近几年给研究生上专业课所用的讲义基础上编写而成的。其特点在于作者既对奇异摄动理论中的基本问题做了深入浅出的论述,又对当前该领域的前沿问题——空间对照结构理论进行了介绍,还列举了丰富的例子便于读者掌握。 全书共分六章,各章内容为:基本概念,初值问题,两点边值问题,无穷大解的初边值问题,阶梯状空间对照结构,脉冲状空间对照结构型解。 本书的读者对象为大学高年级本科生、研究生以及各行各业对奇异摄动理论和方法感兴趣的科技工作者。