这是一本教读者微积分轻松入门的读物,也是一本轻松简单适合自学的书。本书语言轻松幽默,通过大量贴切具体的图形图像尽可能生动地介绍微积分各个主题概念的由来,将中学数学与高等数学完美衔接,中间穿插数学史还原数学思想的产生思路,还有常用的高等数学符号趣谈加深读者学习印象,了解微积分发展的来龙去脉。作者总结多年微积分教学经验,用尽可能浅显易懂的语言,总结学习方法、归纳实用规律,指出常见错误和学生学习盲点,提供详细的解题技巧,中间还穿插一题多解拓宽视野,助力读者轻松快乐地从更高角度掌握微积分具体知识点,让读者对微积分有比较清楚的认知。特别地,本书对中国古代数学和古代数学思想多有介绍,让读者在轻松入门微积分的过程中也能体会到中国古代先哲对数学的贡献。
微分几何讲义(修订版)
本书内容包括常微分方程初值、边值问题的数值解法,抛物型、双曲型及椭圆型偏微分方程的差分解法,偏微分方程和边界积分方程的有限元解法和边界元解法.本书选材力求通用而新颖,既介绍了在科学和工程计算中常用的典型数值计算方法,又包含了近年计算数学研究的一些新的进展,包括作者本人的若干研究成果.本书以介绍微分方程的数值求解方法为主,但也涉及有关的理论,叙述和论证力求既深入浅出,又严格准确.
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
《微积分方法》补充了大量的数学工具,以此作为进一步研究微积分的起点,将大量的微积分概念有机地、巧妙地结合起来处理数学命题,注重从命题本身的不同侧面发现那些处理命题的不同方法,同时注重方法的多样性和趣味性。
关于常微分方程方面的教科书有许多种,但本书却独具特物色,书中强调常微分方程的定性性质和几何性质及其它们的解,全书有272个几何插图,却没有一个复杂的数学公式。全书分为5章36节。本书是俄罗斯数学家(1937-2010),1974年菲尔兹奖得主,他的许多很好作品都被翻译为英文,本书是其中的一本,其简明的写作风格、严谨的数学基础结合物理直觉,给人一种很轻松漫谈式的教学特点,被评为很很好的常微分教材。
关于常微分方程方面的教科书有许多种,但本书却独具特物色,书中强调常微分方程的定性性质和几何性质及其它们的解,全书有272个几何插图,却没有一个复杂的数学公式。全书分为5章36节。本书是俄罗斯数学家(1937-2010),1974年菲尔兹奖得主,他的许多很好作品都被翻译为英文,本书是其中的一本,其简明的写作风格、严谨的数学基础结合物理直觉,给人一种很轻松漫谈式的教学特点,被评为很很好的常微分教材。
本书一部讲述代数曲线的入门书籍,可以作为一数学专业的教程,具备基本的微积分知识可以完全读懂这本书。通过分类实数上的不可约三次曲线和证明它们的点能够形成abelian群,使得椭圆曲线的讲述非常易于学习,书中包括了两曲线相交数上的bezout定理的简单证明。在这新的版本中深入研究了幂级数参化曲线,并且列举出了参化的两大用处,计数曲线的多相交和曲线对偶性的证明及其重叠。目次:曲线的相交;二次曲线;三次曲线;参化曲线。