代数拓扑 同伦理论描述了同伦理论。它得以兴旺发展,应归功于W. Hurewicz1935年引进同伦群以及S. Eilenberg用同伦群引进关于映射扩张的障碍类。同伦理论包括同伦群 n(X),相对同伦群、上同伦群、谱序列以及障碍理论。我们还详细讨论了第1同伦群(也称为基本群) 1(X),它在同伦群中性质知道*多,与它有关的研究成果也*多。我们将展示近代微分几何中曲率与基本群相关的一些成果。同调群与同伦群都是拓扑不变量,也都是同伦不变量。他们是比点集拓扑中得拓扑不变量(如连通性、紧致性)更难、更复杂、更高档次的不变量。我们将给出用连通性、紧致性不能判断不同胚、不同伦,而用同调群或者同伦群却能判断不同胚、不同伦的种种具体实例。*后,还给出了球面 Sn的弱冠同伦群的结果。
本书根据作者近年来多次在南开大学讲授黎曼几何的讲稿写成,可以作为黎曼几何的入门教材,主要介绍黎曼几何的基本概念与基本方法。全书共十四讲,依次介绍黎曼流形、黎曼联络、测地线、曲率等基本概念;其间介绍弧长的变分公式以及Jacobi场等基本方法,并讨论黎曼流形上的几何变换、微分算子、完备性、比较定理等;最后,作为黎曼流形的重要实例,介绍了齐性黎曼流形。每一讲都配有适量的例子和重要的应用,以及少量习题,以加深对相关概念和方法的理解。本书强调几何背景,着重介绍几何直观比较明确的一些定理,定理的证明也以经典微分几何方法为主。
本书简要介绍经典信息几何与矩阵信息几何的基本内容及其应用.全书共八章:第1章概述信息的发展历史;第2章简要介绍作为信息几何理论基础的微分几何的基本内容,没有涉及太多复杂的定义;第3章介绍经典信息的基本内容;第4章介绍矩阵信息几何,着重介绍相关的李群、李代数以及一般线性群的重要子群和子流形的性质,而且介绍各种流形上的自然梯度算法;第5~7章介绍经典信息几何的应用;第8章介绍矩阵信息几何的应用.
商品参数 几何原本 定价 58.00 出版社 重庆出版社 版次 3 出版时间 2014年08月 开本 16开 作者 欧几里得 装帧 平装 页数 631 字数 700000 ISBN编码 9787229071578 内容介绍 《几何原本》共有十三卷,其中第壹卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形面积相等的条件;第二卷讲如何把三角形变成面积相等的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术的理论;zui后讲述立体几何的内容。从这些内容可以
本书的内容是初等的,以平面几何中的不等式为主,全书共分为8章,前面用的是几何方法,后面则要用到一些代数、三角的知识, 一章是立体几何中的不等式,各章之间虽有联系,但是并没有的依赖关系,因此读者可以根据自己的需要,选读某几章或某些例题。 本书有习题100多个,分散在各章,有的习题是该章内容的补充,有的是定理或例题的应用,也有若干难度稍大、可供讨论的问题,习题均有扼要的解答或提示。
本教材作为高等院校土木建筑类等专业画法几何部分的教科书,主要内容包括:正投影图、轴测投影、标高投影、透视投影和投影图中的阴影。编写时按照由浅入深、循序渐进的原则,力求条理清楚,重点突出。通过对本书的学习,可逐步培养和加强学生的图示、图解能力和空间思维能力。本书也可作为继续教育学院、网络学院和电视大学的相关专业相同课程的教材或教学参考书。 与本书配合使用的有《画法几何习题集》(第6版),由同济大学出版社同时出版。 为了帮助广大学生学好“画法几何及工程制图”课程,同济大学出版社还出版了《画法几何解题指导》,可供学生学习、解题时参考。
本教材作为高等院校土木建筑类等专业画法几何部分的教科书,主要内容包括:正投影图、轴测投影、标高投影、透视投影和投影图中的阴影。编写时按照由浅入深、循序渐进的原则,力求条理清楚,重点突出。通过对本书的学习,可逐步培养和加强学生的图示、图解能力和空间思维能力。本书也可作为继续教育学院、网络学院和电视大学的相关专业相同课程的教材或教学参考书。 与本书配合使用的有《画法几何习题集》(第6版),由同济大学出版社同时出版。 为了帮助广大学生学好“画法几何及工程制图”课程,同济大学出版社还出版了《画法几何解题指导》,可供学生学习、解题时参考。
本教材作为高等院校土木建筑类等专业画法几何部分的教科书,主要内容包括:正投影图、轴测投影、标高投影、透视投影和投影图中的阴影。编写时按照由浅入深、循序渐进的原则,力求条理清楚,重点突出。通过对本书的学习,可逐步培养和加强学生的图示、图解能力和空间思维能力。本书也可作为继续教育学院、网络学院和电视大学的相关专业相同课程的教材或教学参考书。 与本书配合使用的有《画法几何习题集》(第6版),由同济大学出版社同时出版。 为了帮助广大学生学好“画法几何及工程制图”课程,同济大学出版社还出版了《画法几何解题指导》,可供学生学习、解题时参考。
全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课程教材及。省级骨干教师培训班参考用书。
解析几何的奠基之作。作者认为古希腊人发明的几何学过于依赖图形,束缚了人的想象力,而且没有说明得出结论的原因;代数学则从属于法则和公式,不能成为改进智力的科学;而三段论的逻辑不能产生任何新的知识。他创造的“真正的数学”,结合三者优点,去掉它们的缺点,用自己发明的坐标系构建了几何图形与代数表达的桥梁,以此为工具研究了直线、曲线、圆和立体图的性质和作图问题,使变数进入数学,创立了解析几何学,为微积分的产生奠定了基础。全书共3章,分别论述仅使用直线和圆的作图问题、曲线的性质,以及立体及超立体问题的作图。作者是杰出的哲学家,曾提出宇宙运动不灭原理,著有《方法谈》和《探求真理的指导原则》等方法论名著。——《中国教育报》《笛卡儿几何》为 哲学家、数学家笛卡儿的经典著作。本书为中学生量身打造
作者方运加以通俗易懂的语言阐述了坐标的概念,从一些简单的几何问题人手,讲述了利用坐标法分析问题与解决问题的基本方法,对比了坐标法、代数方法与几何方法在解题思路、方法的不同特点。在介绍一些基础性的以及若干较复杂但饶有趣味的问题在应用坐标法解题的过程中,使读者清楚地看到坐标概念是代数学与几何学结合的桥梁与一个学科分支――解析几何学――的产生和发展的必然性,并了解它成为强有力的数学工具的基本内涵。 《坐标法》是读者学习解析几何以及高等数学的一本启蒙书,它无论在学习与掌握坐标法还是在建立新的数学观念方面,以及对中学生的数学素养的提高,都会起到良好的作用。本书对大学、专科学校学生也有参考价值。
项武义、王申怀、潘养廉编写的《古典几何学》采用近代观点系统介绍了古典几何学的基础知识(其中包括欧氏几何、非欧几何、解析几何、球面几何与三角、射影几何等),并着重对各种古典几何体系进行比较分析和全局探讨
本书的内容是初等的,以平面几何中的不等式为主,全书共分为8章,前面用的是几何方法,后面则要用到一些代数、三角的知识, 一章是立体几何中的不等式,各章之间虽有联系,但是并没有的依赖关系,因此读者可以根据自己的需要,选读某几章或某些例题。 本书有习题100多个,分散在各章,有的习题是该章内容的补充,有的是定理或例题的应用,也有若干难度稍大、可供讨论的问题,习题均有扼要的解答或提示。