本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
《哲理数学概论(修订版)》论及哲理数学的基本理论及其在人文社会科学、中医学及政治、经济、社会、文化、科学和国家宏观决策等诸多领域的应用,对于落实科学发展观和实现中医现代化及人文社会科学数学化具有十分重要的意义。哲理数学是一门研究自然、社会和人生在深层及在宏观上存在的联系和数量关系的科学,是与传统数学根本不同的新数学。它区别于传统数学的本质特征在于实现了哲学思维与数学思维、定性研究与定量研究、辩证逻辑与形式逻辑、传统文化与现代科学的有机结合。其基本理论包括基本属性论、关联偏差论、中心变量论、辩证关系论、元系统论和阴阳五行新论,其中,前四论是基础,元系统论是核心,主要论及自然系统、社会系统、符号系统诸种属性之本原。 《哲理数学概论(修订版)》适合哲学、数学、中医学和社会科学诸
《集论》共分十章。第壹章至第四章讨论集及其结合,集的势、型及序数,第五章讲集系,内容包括环、体、Borel集及Suslin集;第六章和第七章为点集论,而Borel集及Suslin集在此获得进一步的阐述;第八章为空间的映象;第九章是实函数,第十章是比较近代的材料,内容包括Baire条件及半单叶映象,书末有一个附录,其中所列也是较新材料,但不加证明,作为正文中有关部分的参考。
《高等数学例题与习题集》是一套目前在俄国具有广泛影响的高等数学辅导用书。在我国,无论是高等数学教材的编写方面,还是高等数学的教学方面,都与俄国的高等数学教育有着很深的渊源。因此,将这套书译成中文,介绍给读者。 本书为《高等数学例题与习题集》的第二卷。内容是关于复变函数的例题与习题,具体包括数学分析概论,复数与复变函数,复平面内的初等函数,复平面内的积分计算、牛顿—莱布尼茨积分与柯西积分,解析函数的级数、孤立奇点,解析开拓,留数及其应用,解析函数的几何理论的一些一般问题共8章内容。每章开始给出必要的理论材料,然后是各类典型例题的演算,是为读者安排的练习题,书末给出练习题的答案。
只要将《数学哲学》第二版与版的目录随便比较一下,就可以发现它们之间既有重大差异,又有许多重复之处。总的说来,这一选本是由两种力量促成的。(1)版的使用者(以及第二版的可能使用者)的评论;(2)我们自己对这门学科在过去二十多年间的进展方向的认识。 我们感谢许多朋友和同事。他们指出了自己所认为的版中哪些内容有用,哪些内容不大有用,并指出他们觉得哪些内容可以加进书中。由于人数众多,恕不一一道谢。他们的意见非常宝贵,虽然选择内容的任务主要仍在我们身上。
线性和非线性代数方程组求解是众多科学与工程计算领域的基础共性任务,也是整体数值模拟的关键。本书系统而深入地介绍了迭代方法、预处理技术及其并行计算。迭代法涉及分裂方法、并行多分裂方法、Krylov子空间方法、并行Krylov子空间方法、Newton法及其变形;预处理技术涉及一般代数预处理、问题相关预处理、多层和多重网格预处理以及非线性预处理;为了方便实施,介绍了方法在诸多方面的应用,并用统一框架介绍了网上可得解法器和预处理软件包。
In preparing this new edition I have tried to keep the changes to a minimum, on the principle that one should not meddle with a relatively successful text. Thus the general form of the book remains the same. Naturally I have taken the opportunity to correct the errors of which I was aware. Also the text haeen updated at various points, some proofs have been improved, and lastly about thirty additional exercises are included.
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分