配合课堂教学,提供给学生折纸活动的一本学习材料用书,促进学生在折纸活动中提升动手能力,发展思维能力。该书适合幼儿园到初中的学生,不同阶段的学生都能在折纸中找到乐趣。
本书是与作者所编写的《数值计算方法》(科学出版社出版,ISBN7- 03-015964-0)配套的学习参考书,全书共分七章,内容包括数值方法研究的内容及误差分析、非线性方程的数值解法、线性方程组的直接方法和迭代方法、函数逼近的插值与曲线拟合法、数值积分与数值微分、常微分方程初值问题及边值问题的数值解、矩阵特征值与特征向量的数值解等。每章分三节,节讲述基本概念和主要结论,第二节给出典型例题的详细解答;第三节给出主教材中A类习题的题解和答案。附录给出了上机题的C 语言源程序和程序运行的结果,此部分内容基本上囊括了主教材的所有算法。 本书可作为高等院校计算机应用专业等非数学专业工科本科生及工科研究生学习主教材时不可缺少的配套学习参考书,也可供从事科学与工程计算的科技工作者参考。
With the advent of powerful puting tools and numerous advances in mathematics, puter science and cryptography, algorithmiumber theory haee an important subject in its own right. Both external and internal pressures gave a powerful impetus to the development of more powerful algorithms. These in turn led to a large number of spectacular breakthroughs. To mention but a few, the LLL algorithm which has a wide range of applications, including real world applications to integer programming, primality testing and factoring algorithms, sub-exponential class group and regulator algorithms, etc ...
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematic性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
矩阵计算不仅是一门数学分支学科,也是众多理工科的重要的数学工具,计算机科学和工程的问题最终都变成关于矩阵的运算。 本书主要针对计算机科学、电子工程和计算数学等学科中的研究需求,以各种类型的线性方程组求解为主线进行阐述。内容侧重于分析各种矩阵分解及其应用,而不是矩阵的理论分析。介绍了各类算法在计算机上的实现方法,并讨论了各种算法的敏感性分析。在广度上和深度上较同类教材都有所加强。 本书适合相关领域广大研究生与高年级本科生阅读,也可作为这些领域中学者的参考书。
本书着重介绍了与现代计算有关的数值分析的基本方法,强调基本概念、理论和应用,特别是数值方法在计算机上的实现。以期学生在使用本后能够在计算机上进行有关的科学与工程计算。本书理论叙述严谨、精炼,概念交待明确,描述清晰,系统性较强,可供各校《数值分析》课程采用。 全书包括:插值和逼近,数值积分和微分,解线性代数方程的直接和迭代方法,解非线性方程和方程组的数值方法,特征值问题和常微分方程初值问题的计算方法。
数独自诞生以来,迅速风靡世界,是因为它既能跨越文化传播,又健智益脑,趣味无穷。本套书针对目前数独的现状,开发了连体数独、立体数独、线型数独及混合运算数独四个方面的书共6本。连体数独需要读者对二个变形数独具有良好的协同能力。立体数独突破了平面数独的范畴,要求读者具备良好的空间慨念和三维思维能力。线型数独是通过变化多端的线段组成的图型对数字在排列中进行特定的约束,使数独有更高的关联性和更强的逻辑性。线型数独内容丰富,要求读者具有很强的适应能力与归纳能力。混合运算数独,因它在运算中的不确定性,要求读者具有灵活的思维能力和精确持久的运算能力。本套书为读者提供了一个全新的数独平台,通过做题,读者在空间概念,逻辑思维,运算能力及处理复杂的数独问题方面能全方位得到快速提高。
为进一步贯彻落实“科教兴国”战略、为 专家学者提供 广阔的学术交流平台,“第十一届全国科学计量学与科教评价研讨会”以“大数据背景下‘五计学’与评价科学的新发展”为主题,会议论文成果代表了我国计量学领域的 进展和水平,内容涉及计量学的理论、方法与应用等多个方面,集中探讨了当前的学科前沿和发展方向。这些 论文内容上有以下特色 :①学科交叉融合;②研究手段创新;③研究领域拓展;④研究内容深化。
本书重点介绍有限单元法的基本理论、程序设计,以及在工程中的应用。主要内容包括:以弹性力学为基础介绍有限元的概念和基本理论,等参有限元的基本理论和形函数的统一构造方法,主要的高效数值算法和程序设计,以及弹塑性问题、结构动力问题、温度场与温度应力问题、混凝土
内容简介 本书汇集了6届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
为进一步贯彻落实“科教兴国”战略、为 专家学者提供 广阔的学术交流平台,“第十一届全国科学计量学与科教评价研讨会”以“大数据背景下‘五计学’与评价科学的新发展”为主题,会议论文成果代表了我国计量学领域的 进展和水平,内容涉及计量学的理论、方法与应用等多个方面,集中探讨了当前的学科前沿和发展方向。这些 论文内容上有以下特色 :①学科交叉融合;②研究手段创新;③研究领域拓展;④研究内容深化。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematic性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书以版MATLAB为平台,介绍了数值分析方法与图形可视化。全书共分9章,、2章讲解了MATLAB基础知识,第3~9章分别讲解了误差、插值法与曲线拟合、线性方程组的数值解法、非线性方程求解、数值微分与数值积分、矩阵特征值计算和常微分方程的数值解。MATLAB以其独特的魅力,改变了传统数值分析的编程观念,从而成为实现上述目标的有利工具。本书可作为理工科各专业本科生、研究生以及应用MATLAB的相关科技人员学习MATLAB数值分析、建模、仿真的教材或参考书。
配合课堂教学,提供给学生折纸活动的一本学习材料用书,促进学生在折纸活动中提升动手能力,发展思维能力。该书适合幼儿园到初中的学生,不同阶段的学生都能在折纸中找到乐趣。
配合课堂教学,提供给学生折纸活动的一本学习材料用书,促进学生在折纸活动中提升动手能力,发展思维能力。该书适合幼儿园到初中的学生,不同阶段的学生都能在折纸中找到乐趣。
《数值分析及其MATLAB实验》详细介绍了数值分析的基本概念和方法,包括数值代数、迭代法、数据建模、数值微积分和常微分方程数值解等,并基于MATLAB软件介绍了相应的工程数值算法及MATLAB软件的偏微分方程数值解和化方面两个专用工具箱。
谢冬秀、左军编著的《数值计算方法与实验(十二五普通高等教育规划教材)》比较全面地介绍了科学与工程计算中常用的数值计算方法,具体介绍了这些计算方法的数学原理与算法及其实现,同时对这些数值计算方法的计算效果、稳定性、收敛效果、适用范围以及优劣性与特点也作了简要的分析。全书共8章,内容包括误差分析、非线性方程求根、线性方程组的直接求解和迭代求解、函数的数值逼近 (代数插值与函数的逼近)、数值积分与数值微分、矩阵特征值与特征向量的计算、常微分方程初值问题的数值解法等。 本书概念清晰,语言通俗易懂,理论分析严谨,结构编排由浅入深.各章附有一定数量的习题,供读者练习使用,书后附有习题答案与提示。 本书可作为高等院校信息与计算科学专业、数学与应用数学专业、计算机专业、通信工程专业等理工科本科及研