《轨迹》主要讨论了点的轨迹的意义和探求轨迹的方法,包括综合法和解析法。在此基础上,还简要地介绍了动图形的轨迹和曲线族的包络的初步知识。《轨迹》可供中学数学教师参考,也可供中学生课外阅读。
本书收集了2022年至2023年度中国数学奥林匹克的试题,并对试题作详细地分析、解答与评点。 试题包括:全国高中数学联赛、全国中学生数学冬令营、女子数学奥林匹克、东南地区数学奥林匹克、 集训队测试、美国数学奥林匹克、俄罗斯数学奥林匹克以及 数学奥林匹克。 本书倾注了许多专家和学者的心血,书中有很多他们的创造性的工作。本书可供数学爱好者、参加数学竞赛的广大中学生、从事数学竞赛教学的教练员、开设数学选修课的教师参考。
本书是在贯彻落实*《高等教育面向21世纪教学内容和课程体系改革计划》的要求精神及第1版的基础上,按照工科及经济管理类“本科数学基础课程教学基本要求”并结合当前大多数本专科院校的学生基础、教学特点和教材改革精神进行编写的,全书以通俗易懂的语言,全面而系统地讲解数学实验的内容,全书共分7章,第1章是绪论;第2-5章是基础实验部分,内容包括一元微积分实验、多元微积分实验、线性代数实验和概率论与数理统计实验;第6章是综合实验;第7章是数学建模初步,每章都以实验的形式将有关内容与MATLAB相结合,达到理论与实践的统一,便于读者学习和上机实验,每节后面有“练习题”,每小节(或节)的例题(或实验)前有简要的“实验目的”,并在附录中有MATLAB的基本操作。 本教材理论系统,举例丰富、新颖,讲解透彻,难度适宜,
有限单元法已经成为研究物理问题、进行工程问题设计和分析的一种重要手段。本书以弹性力学问题和传热问题为工程应用背景,介绍了有限单元法的原理与实现方法、ANSYS的建模与分析方法、弹性力学平面问题的有限单元法、弹性力学平面问题的分析、等参单元、弹性力学轴对称问题的有限单元法和传热问题的有限单元法。 本书可供机械工程、材料加工工程的技术人员使用,也可供相关专业高年级本科生和研究生参考。
本书主要研究了求解多目标优化问题的人工蜂群算法及混合遗传算法,针对不同的测试问题,建立了相应的多目标优化算法模型,并从多个角度与相关算法进行了试验对比分析。在多目标人工蜂群算法方面,设计了一种多目标人工蜂群框架,并针对框架的各部分,实现了多种策略,从而衍生出多种多目标人工蜂群算法,并将其应用于求解具有连续空间的函数优化问题和离散空间的面向QoS的无线网络路由优化问题。在多目标混合遗传算法方面,对已有的几种被广泛认可的遗传算法及PLS算法进行了研究,提出了几种改进的混合多目标遗传算法,并利用提出的算法求解了光网络优化问题及服务选取问题。
四元术是元朝朱世杰提出的建立和解答多元高次方程组的方法,它代表了中国古代数学的杰出水平。本书从沈钦裴四元消法法则的统一表示人手,把沈钦裴四元细草用吴消元法的笔算形式表示出来,找到多项式方程组的一般解法。 本书适合数学史工作者、大学数学系师生及计算机专业的师生、中学数学教师及数学爱好者阅读。