本书不仅详细叙述了拓扑线性空间,包括若干子类局部凸空间、赋范空间、内积空间的公理系统、结构属性及其之上的强弱拓扑、共轭性,还深入论述了该学科离不开的几个专题,即形式上更为一般的三大基本定理与泛函延拓定理, Banach代数特别是Gelfand变换的基本理论,紧算子及其谱理论,自伴算子的谱理论,无界正常算子的谱理论以及Bonsall的闭值域定理,不变子空间的Lomonosov定理等;而且给出了以上基本理论的丰富多彩的应用,包括完整的关于广义函数、Fourier变换及其偏微分方程基本解的论述,对于Tauber型定理的应用,von Neumann的平均遍历定理,算子半群的Hille-Yosida定理并应用于发展方程等。
《管理类专业学位联考(MBA MPA MPAcc)数学高分突破(第4版 2015版)》严格按照管理类专业学位硕士研究生联考(MBA、MPA、MEM、MPAcc、MTA、MLIS、MAud)考试大纲的要求,由数学辅导专家时光朋老师编写而成,作者对历年联考真题进行了深入地研究,将其整理分类、系统归纳与总结,结合考试大纲整理出相对应的考点,精讲典型例题,总结出解题思路与技巧,使考生能够快速掌握联考数学考试的解题规律与应试技巧。每章后面配有强化专题训练,并附有详细参考答案,方便考生进行自我检测,及时查漏补缺。《管理类专业学位联考(MBA MPA MPAcc)数学高分突破(第4版 2015版)》特点为“新、精、巧、快、深”,能使考生迅速提高应试能力,达到“举一反三、触类旁通”的效果。 《管理类专业学位联考(MBA MPA MPAcc)数学高分突破(第4版 2015版)》难度与真题相仿,或
本书不仅详细叙述了拓扑线性空间,包括若干子类局部凸空间、赋范空间、内积空间的公理系统、结构属性及其之上的强弱拓扑、共轭性,还深入论述了该学科离不开的几个专题,即形式上更为一般的三大基本定理与泛函延拓定理, Banach代数特别是Gelfand变换的基本理论,紧算子及其谱理论,自伴算子的谱理论,无界正常算子的谱理论以及Bonsall的闭值域定理,不变子空间的Lomonosov定理等;而且给出了以上基本理论的丰富多彩的应用,包括完整的关于广义函数、Fourier变换及其偏微分方程基本解的论述,对于Tauber型定理的应用,von Neumann的平均遍历定理,算子半群的Hille-Yosida定理并应用于发展方程等。
本书对考研大纲所要求的知识点进行全面阐述,并对考试重点、难点以及常考知识点进行深度剖析,注重对所学知识的应用,以便能够开阔考生的解题思路,使所学知识融会贯通,并能灵活地解决问题。本书优化设计了数量的练习题,巩固所学知识,提高实际解题能力,实现知识掌握、习题解答的统一。
本书共分为四篇九章,每一章按内容体系分成若干节,每一节又分为内容精讲、综合题解和习题三部分。 内容精讲部分以充实严谨、深入浅出、形象生动的方式将离散数学的主要内容展现在读者面前,对于难以理解的概念和定理配以例题、插图或漫画,能够加深读者对基本概念和基本定理的理解; 综合题解部分选编了大量的经典例题,着重于解题思路和方法的引导; 习题部分精选了多道与本节重点内容相关的典型练习题,使得读者可以在做题的过程中巩固已学的知识。 书中对重点和难点内容作了注解,对题目的难度按等级作了标注,使得不同程度的学生都能从中获益。 本书可作为高等院校工科离散数学课程的教学参考书以及硕士研究生入学考试的辅导书,也可以作为其他需要学习离散数学的相关人员的参考读物。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为“基础篇”和“提高篇”,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为基础篇,分为平面几何基础、立体几何基础和打开证明之门三个章节。本书较为重视几何语言,在进入具体图形的学习之前,用大量篇幅详细讲解了定义、命题、条件、结论、公理、定理、性质等基本概念,有助于读者区分理解。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
暂无内容简介。。。。。。
本书将高等数学主要内容按问题分类,通过引例,归纳总结各类问题的解题规律、方法和技巧,其中不少是作者多年来积累的教学经验。读者阅读此书,必将增强分析问题、解决问题和应试的能力。本书实例多、类型广、梯度大。例题主要取材于两部分:一部分是“十二五”普通高等教育本科国家级规划教材《高等数学》(第七版)(同济大学数学系编,高等教育出版社出版)中的典型习题;另一部分是历届全国硕士研究生入学考试数学试题,其绝大部分都已收入。本书可供本(专)科学生学习高等数学参考;对于自学者和有志攻读硕士学位研究生的青年,本书更是良师益友;对于参加专升本、成人教育、自考的读者,也不失为一本有指导价值的很好的参考书;对于从事高等数学教学的教师,也有的参考价值。
本书以考试大纲要求为依据,参考高等数学教学大纲。按章节知识点与解题方法分类,集中总结了考试重点内容,并针对学生易混淆的概念一一做了点拨。为学生系统地掌握数学知识,了解考研试题类型,掌握解题技巧提供颇为经典的辅导。整本书的主要写作目的是为报考硕士研究生入学考试考生复习高等数学提供高效指导。也可供高等工科院校学生、教师参考。
《Abaqus有限元分析从入门到精通(2022版)》共8章,第1章为概述,介绍Abaqus软件发展、组成及帮助文档等内容;第2章为Abaqus基础知识,介绍窗口功能、工作环境设置、基本仿真流程、关键术语及文件格式,并给出了一个简单实例;第3章和第4章分别为结构线性静力学分析和结构非线性静力学分析,在介绍基本概念、功能应用、设置原则等知识的基础上,给出了框架受力分析、螺栓受力分析等多个典型实例;第5章和第6章分别为显式动力学分析和热学分析,在介绍基本概念、基本功能、一般流程等内容的基础上,给出了冲压件、铣削件、焊接件等常见工艺制件的分析实例;第7章和第8章分别为复合材料仿真分析和与fe safe联合的疲劳仿真分析。 《Abaqus有限元分析从入门到精通(2022版)》选取了Abaqus在企业中的典型应用,体现了Abaqus的主要应用领域与优势,步
《北大燕园·2015年李永乐.李正元考研数学(2):数学复习全书(数学二)(附习题全解)》每章均由以下四个部分构成:一、内容概要与重难点提示——编写该部分的目的主要使考生能明确本章的重点、难点及常考点,让考生弄清各知识点之间的相互联系,以便对本章内容有一个全局性的认识和把握。二、考核知识要点讲解——本部分对大纲所要求的知识点进行了全面地阐述,并对考试重点、难点以及常考点进行了剖析,指出了历届考生在运用基本概念、公式、定理等知识解题时普遍存在的问题及常犯的错误,同时给出了相应的注意事项,以加深考生对基本概念、公式、定理等重点内容的理解和正确应用。三、常考题型及其解题方法与技巧——本部分对历年统考中常见题型进行了归纳分类,归纳总结了各种题型的解题方法,注重一题多解,以期开阔考生的解题思
《考研数学三部曲之大话概率论与数理统计》是一本独特的概率论与数理统计参考书,以“盖楼”为目标轻松构筑整个体系。读者每阅读完一章,即盖完了大楼的一层,而每层中又分为“砖”和“房间”两部分,先运来“砖”再搭建“房间”,这种安排内容的方式使得全书充满了趣味性。 《考研数学三部曲之大话概率论与数理统计》的特色除了趣味性之外,还有三个“非常”:语言非常通俗易懂,逻辑非常清晰,例题非常丰富。 《考研数学三部曲之大话概率论与数理统计》的主要内容包括高等院校概率论与数理统计课程的所有内容,针对考研数学的特殊性进行了强化,同时对于一些传统课本中的重点、难点、疑点,以及被忽视的一些潜在要点做出了全新诠释,另外,由于作者常年从事考研培训,本书还包括相当多的不传之秘——考研数学的套路。 《