《大学数学学习方法指导丛书:数学分析》较为系统地综述了数学分析的基本内容、方法、技巧。通过典型例子指出在学习、作业、考古中常见的错误及纠正的办法。全书重点放在钥匙方法、技巧上,提供一篆列新颖有效果的钥匙思路,全书配有大量的习题、历届考研试题,书末附有答案,也介绍一些较为深入的内容。
本书是企鹅辞典中《奇妙而有趣的数》的姐妹篇,但有不同,本书中几何图形的形态变化是如此的丰富,以至任何一本书都不能包含更多的样本。全书涉及的题材无非是镶嵌图案,或者是奇妙的拓扑性质,或者是一些的几何性质,这些的性质是与丰富的经典几何相比而言的。本书就是从这些丰饶的内容中选取的。
《单墫初中数学指津:平面几何的知识与问题》主要内容包括:三角形的全等、几何中的不等、平行线、三角形的内角和与公理体系、四边形、相似形、直角三角形等。
《实分析中的反例》汇集了实分析中的大量反例,主要内容有集合、函数、微分、Riemann积分、无穷级数、一致收敛、Lebesgue测度和Lebesgue积分、有界变差函数和连续函数。对平面点集、二元函数和二重积分方面的反例也做了介绍。 《实分析中的反例》可供高等学校数学类各专业的本科生、研究生以及教师参考。
本书沿着一条简捷的途径,着重地介绍了代数K-理论在拓扑学、几何学、数论和算子代数中有重要应用的K0群、K1群及K2群的基本理论,K0群的三种等价定义,K1群和K2群的同调刻画,以及它们之间的正合列等,可将读者带到这一学科的前沿。同时还介绍了类数计算及K2群计算方面的一些基本结果及近十年来外学者得到一些新成果。全书自成体系,学过线性代数和近世代数的读者都可阅读。本书可作为数学系高年级学生及研究生的教材,也可供高校数学教师及数学研究人员阅读和参考。
这是一套完整介绍数学分析的教材,内容涉及从实数到流形上的微分形式,其中包括渐近方法、傅立叶分析,拉普拉斯变换、勒让德变换,椭圆函数以及频率分布。本书语言通俗,表达清晰,各章有大量的练习、思考题以及应用实例。 这是一套为数学家和物理学家写的最全面的数学分析教材。其内容编排与传统教材主要区别于以下两方面:一方面是与自然科学应用的紧密联系,另一方面是阐述了现代数学的思想方法在代数、几何以及拓扑学中的应用。这套书蕴含了极其丰富的思想,并清晰地呈现了用现代数学的思想方法研究特殊问题时发挥的重要作用。第2卷的特别之处在于,它包含了矢量分析,微分流形理论,广义函数理论和位势理论,傅立叶级数及傅立叶变换,以及渐近展开理论的基本原理。现在这种内容编排被认为是具有创新性的,其实.它在哥尔茨(Go