在这本书里,读者将会跟随作者一同对Oracle数据库的相关知识进行梳理,很终共同提炼出必须很先掌握的那部分知识,无论你是数据库开发、管理、优化、设计人员,还是从事Java、C的开发人员。接下来作者再将这部分知识中很实用的内容进一步提炼,浓缩出很精华的部分,分享给大家。这是“二八现象”的一次经典应用。这部分知识就是Oracle的物理体系结构、逻辑体系结构、表、索引以及表连接五大部分。通过阅读本书中的这些章节,读者将会在短时间内以一种有史以来很轻松的方式,完成对Oracle数据库的整体认识,不仅能解决工作中的常规问题,还能具备的设计和调优能力。通过对这些章节的学习,读者在Oracle的学习中会有极大的收获。然而,作者更希望看到的是:让读者的收获,不止Oracle。为达到此目的,作者精心将全书分成上下两篇,刚才所描述的具体知
《数据质量管理基础》正文由7章组成(重点考虑关系型结构化数据):章简介数据质量问题;第2章展开讨论条件依赖理论;第3章阐述发现条件依赖,以及基于发现条件依赖检测数据不一致、修复数据的实践技术;第4章介绍依赖匹配作为数据去重的匹配规则;第5章重温经典的两个信息完整性假定,即封闭世界假定和开放世界假定,并提出和研究相对信息完整性理论;第6章进行数据时效性建模,以便时间戳缺失情况下,在数据库中进行实体值辨别并基于此返回查询结果;第7章探索数据质量问题之间的交互作用。
本书从企业数字化转型入手,介绍企业如何通过OpenShift构建PaaS平台 实现DevOps 实现微服务治理和微服务的管理。 全书共分为部分: 部分PaaS能力建设。即本书的“PaaS三部曲”,包含第2-4章的内容,分别是:基于OpenShift构建企业级PaaS OpenShift在企业中的开发和运维实践 OpenShift在公有云上的实践。 第二部分DevOps能力建设。即本书的“DevOps两部曲”,包含第5-6章的内容,分别为:在OpenShift上实现DevOps DevOps在企业中的实践。 第三部分微服务能力建设。即本书“微服务三部曲”,包含第7-9章的内容,分别为:微服务介绍及Spring Cloud在OpenShift上落地 Istio架构介绍与安装部署 基于OpenShift和Istio实现微服务落地。 第四部分微服务管理。包含本书0章的内容。介绍基于OpenShft和红帽其他解决方案微服务的管理(API管理 分布式集成和流程自动化),并最终实现企业业务中台的建设。
Python凭借其简单、易读、可扩展性以及拥有巨大而活跃的科学计算社区,在需要分析、处理大量数据的金融行业得到了广泛而迅速的应用,并且成为该行业开发核心应用的编程语言。《Python金融大数据分析》提供了使用Python进行数据分析,以及开发相关应用程序的技巧和工具。 《Python金融大数据分析》总计分为3部分,共19章,部分介绍了Python在金融学中的应用,其内容涵盖了Python用于金融行业的原因、Python的基础架构和工具,以及Python在计量金融学中的一些具体入门实例;第2部分介绍了金融分析和应用程序开发中重要的Python库、技术和方法,其内容涵盖了Python的数据类型和结构、用matplotlib进行数据可视化、金融时间序列数据处理、高性能输入/输出操作、高性能的Python技术和库、金融学中需要的多种数学工具、数生成和过程模拟、Python统计学应用、Python和Excel的集
大数据时代,数据成为决策最为重要的参考之一,数据分析行业迈入了一个全新的阶段。R是一款的统计分析软件,《数据分析:R语言实战》侧重于使用R进行数据的处理、整理和分析,重点讲述了R的数据分析流程、算法包的使用以及相关工具的应用,同时结合大量精选的数据分析问题对R软件进行科学、准确和全面的介绍,以便使读者能深刻理解R的精髓和灵活、高效的使用技巧。 通过《数据分析:R语言实战》,读者不仅能掌握使用R及相关的算法包来快速解决实际问题,而且能学会从实际问题分析入手,到利用R进行求解,以及对结果进行分析。 《数据分析:R语言实战》可作为计算机、互联网、机器学习、信息、数学、经济金融、管理、运筹、统计以及有关理工科专业的本科生、研究生的学习用书,也能帮助市场营销、金融、财务、人力资源管理人员及产品经理解
本书主要介绍客户关系管理(CRM)环境中使用的数据仓库的设计和构建。书中介绍了数据仓库的概念,探讨了数据仓库的体系结构、逻辑模型、物理实现、工程管理等内容。并且描述了建造数据仓库的一些工具产品,介绍了购买这些工具时需要注意的问题。另外,书中还对数据仓库的时间性问题提出了独到的见解,给出了可行的方案。?本书适合于希望学习数据仓库原理的人员以及数据仓库建造的顾问人员使用。
本书分为部分,分别为大数据基础理论分析、基于海量语意规则的大数据流处理技术及大数据应用。 部分介绍大数据领域的主要基础理论,包括大数据基本概念、可编程数据中心、云文件系统、云数据库系统、大数据并行编程与分析模型、大数据智能计算算法、基于大数据的数据仓库技术、大数据安全与隐私保护,以及基于大数据的语意软件工程方法等。 第二部分介绍基于海量语意规则的大数据流处理技术,包括基于规则的大数据流处理介绍、语意规则描述模型、海量语意规则网及优化、海量语意规则处理算法及海量语意规则并行处理等。 第三部分主要介绍大数据的一些典型应用,包括:文化大数据、医疗健康大数据、互联网金融大数据、教育大数据、电子商务大数据、互联网大数据、能源大数据、交通大数据、宏观经济大数据、进出口食品安全监管大数据、基