《自然哲学的数学原理》是牛顿的科学才华处于时期所写的旷世巨著,是他“个人智慧的结晶”。牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。在《自然哲学的数学原理》之后,人类在自然科学中的成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。《自然哲学的数学原理》标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。《自然哲学的数学原理》不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
本丛书精选对人类文明发展起过重要作用、在深化人类对世界的认识或推动人类对世界的改造方面有某种里程碑意义的主题,深入浅出地介绍数学文化的丰富内涵、数学发展史中的一些重要篇章以及一些数学家的历史功绩和品质等内容,适于包括中学生在内的读者阅读。《二战时期密码决战中的数学故事》是其中之一!
数学到底是一种由行家施展身手来表演如何化解难题的高度复杂的智力游戏,还是数学家在探索数学实在这一独立领域过程中所带来的发现?为什么这个看似抽象的学科能够提供打开物理宇宙深层秘密的钥匙?如何回答这些问题将明显影响着我们对实在的形而上的思考。 世界数学家、数学物理学家和数学哲学家们在本书中对这些问题进行了探讨。每一章后都有一篇由其他作者给出的对本章的简短评论。这些评论既让我们看到由此引发的进一步问题,又展现了这些发人深省的争论中的危机根源。《数学的意义》一书适合对数学与实在关系问题感兴趣的任何层次的读者阅读,它对数学家和科学哲学家非常有用,为他们研究这一迷人的课题提供了全新的视角。
本书是奥博丛书之一。 本书是数学解题研究方面的专著,介绍了解题基础知识和解题理论。 这套奥博丛书,其中就有若干或许可以称为解题秘籍。当然,得到它之后,要成为解题高手,还得注意: 一、勤加练习,因为解题是实践性的技能,只能通过模仿和实践来学到它。 二、循序渐进,孔子说:“欲速则不达。”不能操之过急,一个问题或一种方法,弄清楚了,再往下看,切忌囫囵吞枣,食而不化。 三、不要迷信书本,“尽信书,则不如无书。”要成为真正的高手,不能依赖秘籍,而要自创新招。
本书包括:分析中注入严密性、实数和超限数的基础、几何基础、19世纪的数学、实变函数论、积分方程、泛函分析、发散级数等。 本书是《古今数学思想》丛书中第四册,本书论述了从古代一直到20世纪头几十年中的重大数学创造和发展,目的是介绍中心思想,特别着重于那些在数学历史的主要时期中逐渐冒出来并成为最突出的、并且对于促进和形成尔后的数学活动有影响的主流工作。本书所极度关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己的成就的理解。
《数学与人文》丛书第四辑将继续着力贯彻“让数学成为国人文化的一部分”的宗旨,展示数学丰富多彩的方面。《女性与数学》主题栏目“数坛巾帼”,通过部分女数学家的评传,以历史实例来引发对“女性与数学”这一社会课题的思考。特别是,本专栏刊登了两位活跃在现代数学前沿的女数学家的访谈录,她们的成长经历会引起读者的兴趣。 本辑“数海钩沉”栏目刊发丘成桐先生“清末与日本明治维新时期数学人才引进之比较”,以史为鉴,发人深省;“数学星空”栏目特约文章冯端院士“纪念冯康院士诞辰90周年”,真切感人;新辟栏目“数学人生”,刊数学家们探求真理的人生感悟与经验之谈,本辑特载国家科技奖获得者谷超豪先生激励人心的讲演“请勿歌仰止,雄峰正相迎”;“数学家诗词”栏目,为数学家开辟发表诗作的园地;“数学之旅”栏目,发
本书作者精于逻辑谜题和数学游戏。他从小就学会小国际象棋,以后的人生中都持续下棋活动,还使得他对数学和智力游戏的设计有特别强的兴趣。本书20世纪初期出版问世以来,一直是英国人最喜欢的智力娱乐工具,并被翻译成数十种文字流传在各个国家。该书还入选了2006年英国BBC电视台《影响英国人生活的100本图书》之一,它集趣味性及智力类游戏为一体,其内容更贴近读者。 本书20世纪初期出版问世以来,一直是英国人最喜欢的智力娱乐工具,并被翻译成数十种文字流传在各个国家。2005年英国BBC电视台进行的“ 影响英国人生活的100本图书”的调查当中,本书位列其中,成为一本入选的智力游戏类图书。在本书编辑的过程中,针对原文做了一些修改,删除了那些过于艰深和冗长的题目,并增加许许多多的插图,期使本书更具趣味性,更贴近读者。
本书围绕微观的数学主方法论和宏观的数学方法论分别对波利亚的数学启发法、数学发现的的逻辑与关系映射反演方法、数学抽象的主法与抽象度分析法、数学美与数学直觉、数学活动论与数学文化论等主题进行了论述。书中不仅较为集中地反映了外的数学方法论研究上的成果,而且也包括作者若干独立的研究与数学实践活动、特别是与数学教学的密切结合,并体现了数学方法论与数学哲学、数学史研究互相结合重要特点。
《怎样解题:数学思维的新方法》是靠前有名数学家波利亚论述中学数学教学法的普及名著,对数学教育产生了深刻的影响。波利亚认为中学数学教育的根本宗旨是教会年轻人思考,他把“解题”作为培养学生数学才能和教会他们思考的一种手段和途径。《怎样解题:数学思维的新方法》是他专门研究解题的思维过程后的结晶。《怎样解题:数学思维的新方法》的核心是他分解解题的思维过程得到的一张“怎样解题”表。作者在书中引导学生按照“表”中的问题和建议思考问题,探索解题途径,进而逐步掌握解题过程的一般规律。书中还有一部“探索法小词典”,对解题过程中典型有用的智力活动做进一步解释。
《初等数论100例》由柯召、孙琦编著,选编了100个初等数论题目和它们的解答,并在后面列出了所需要的定义和定理,通过这些题目和解答,能增强解决数学问题的能力。 本书除了可以作为中学教师、中学生的读物外,也可供广大数学爱好者阅读。
本书版是“面向21世纪课程教材”,第二版是在总结近几年的教学经验,吸收有关教师宝贵意见的基础上修订而成的。与版相比,在有关内容的表述方法和材料的安排等方面都作了许多改动,使之更便于教学。 本书内容包括复变函数、积分变换(含Fourier变换、Laplace变换和小波变换)及其应用、偏微分方程的定解问题、特殊函数、数学物理方程中的近似解法等。本书本着加强应用、侧重方法的原则,着重介绍常用的应用数学方法及其在实际中的应用。同时适当增加了一些近代应用数学方法,为学生进一步学习近代数学内容设置了延伸发展的接口。 本书可作为高等学校工科各专业数学物理方法课程的教材,也可供工科研究生和社会读者阅读。
《数学万花筒2:五彩缤纷的数学问题及知识》是《数学万花筒:五光十色的数学趣题和逸事》的续集,继承了其内容庞杂、题材新颖、角度独特、大部分内容独立成篇的特点,并在此基础上有所突破,讲解了更加贴近生活的数学谜题、游戏、讽刺短文、流行语、笑话及民间传说等,其中还包括了历史题,如巴比伦计数方法、算盘及埃及分数等。 《数学万花筒2:五彩缤纷的数学问题及知识》适合于对数学及数学史有着浓厚兴趣的中学生、大学生等数学爱好者阅读。